Galilean invariance and the Lorentz transformation are the two pillars of mechanics that an equation of motion must respect. The objective is to extend the Galilean invariance to uniform rotational motion and to expansion motion of which motion at constant translational velocity is only a special case. The second goal is to show that the discrete equation of motion is naturally relativistic without using the Lorentz transformation. The realization of these two aims leads to different concepts of special relativity: (i) space is homogeneous and isotropic and (ii) time, which flows regularly, is invariant by translation. These invariances, symmetric for translation and rotation, observed by the discrete equation of motion give it fundamental conservation properties to extend the scope of the equations of fluid mechanics to other fields of physics.

1.
L.
Landau
and
E.
Lifchitz
,
Fluid Mechanics
(
Pergamon Press
,
London
,
1959
).
2.
I.
Newton
,
Principes Mathématiques de la Philosophie Naturelle
(
traduit en francais moderne d'après l'œuvre de la marquise Du Châtelet sur les Principia, fac-similé de l'édition de 1759 publié aux Editions Jacques Gabay en 1990
,
Paris
,
1990
).
3.
F.
Marner
,
P.
Gaskell
, and
M.
Scholle
, “
On a potential-velocity formulation of Navier-Stokes equations
,”
Phys. Mesomech.
17
,
341
348
(
2014
).
4.
M.
Scholle
,
F.
Marner
, and
P. H.
Gaskell
, “
A potential-based formulation of the classical and relativistic Navier-Stokes equations
,”
PAMM
20
,
e202000231
(
2021
).
5.
M.
Scholle
and
M.
Mellmann
, “
In search of a variational formulation of the relativistic Navier-Stokes equations
,”
PAMM
21
, e
202100101
(
2021
).
6.
S.
Wang
, “
Extensions to the Navier-Stokes equations
,”
Phys. Fluids
34
,
053106
(
2022
).
7.
T.
Tao
, “
Searching for singularities in the Navier-Stokes equations
,”
Nat. Rev. Phys.
1
,
418
419
(
2019
).
8.
R. E.
Hoult
and
P.
Kovtun
, “
Stable and causal relativistic Navier-Stokes equations
,”
JHEP
06
,
067
(
2020
).
9.
A.
Granik
and
G.
Chapline
, “
On some exact solutions of the relativistic Navier-Stokes equations
,”
Phys. Fluids
8
,
269
279
(
1996
).
10.
L.
Landau
and
E.
Lifchitz
,
The Classical Theory of Fields
, 3rd revised english ed. (
Pergamon Press Ltd
.,
Oxford
,
1971
).
11.
J.-P.
Caltagirone
,
Discrete Mechanics, Concepts and Applications
(
ISTE, John Wiley and Sons
,
London
,
2019
).
12.
J.-P.
Caltagirone
, “
On Helmholtz-Hodge decomposition of inertia on a discrete local frame of reference
,”
Phys. Fluids
32
,
083604
(
2020
).
13.
Y.
Kosmann-Schwarzbach
,
Noether Theorems. Invariance and Conservations Laws
(
Springer-Verlag
,
New York
,
2011
).
14.
A.
Friedmann
, “
On the curvature of space
,”
Gen. Relativ. Gravitation
31
,
1991
(
1999
).
15.
J.-P.
Caltagirone
, “
On a reformulation of Navier-Stokes equations based on Helmholtz-Hodge decomposition
,”
Phys. Fluids
33
,
063605
(
2021
).
16.
J.-P.
Caltagirone
, “
Application of discrete mechanics model to jump conditions in two-phase flows
,”
J. Comput. Phys.
432
,
110151
(
2021
).
17.
J. C.
Maxwell
, “
A dynamical theory of the electromagnetic field
,”
Proc. R. Soc.
13
,
531
536
(
1864
).
18.
A.
Liénard
, “
Champ électrique et magnétique produit par une charge électrique concentrée en un point et animée d'un mouvement quelconque
,”
L'Éclairage électrique
XVI
,
5
112
(
1898
).
You do not currently have access to this content.