We investigate the performance of two-point Padé approximants on the truncated series solutions for the shear and elongational viscosities (obtained directly from the exact solutions or by asymptotic methods) for viscoelastic flows modeled with the Giesekus constitutive equation. Τhe major dimensionless groups are the Weissenberg number (Wi), the Giesekus mobility parameter (α), and the ratio of the polymer viscosity to the total viscosity of the fluid (ηp) in terms of which the exact analytical solutions for the shear and elongational viscosities are found. The exact solutions are used to derive truncated series expansions in terms of the Weissenberg number at the Newtonian limit (zero Wi) and in terms of the inverse of the Weissenberg number at the purely elastic limit (infinite Wi). These series are then used to construct low- and high-order two-point diagonal Padé approximants. It is found that both the low- and high-order formulas predict the right trends over the entire range of Wi, from the Newtonian limit to the pure elastic limit. As expected, the high-order formula is much more accurate than the low-order formula. The results show that viscoelastic phenomena, such as shear thinning and extensional thickening, at any value of the Weissenberg number can be predicted analytically with acceptable accuracy using the proposed two-point Padé non-linear analysis. Finally, a fourth-order formula in terms of the Weissenberg number (or in terms of the Deborah number) for the drag force on a rigid sphere that translates with constant speed in a Giesekus fluid is also provided along with a discussion regarding the missing information from the literature, that is, required to perform the proposed non-linear analysis.

1.
M.
Van Dyke
,
Perturbation Methods in Fluid Mechanics
(
The Parabolic Press
,
Stanford
,
1964
).
2.
E. J.
Hinch
,
Perturbation Methods
(
Cambridge University Press
,
1991
).
3.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I. Asymptotic Methods and Perturbation Theory
, 1st ed. (
Springer-Verlag
,
New York
,
1999
).
4.
D.
Shanks
, “
Non-linear transformations of divergent and slowly convergent sequences
,”
J. Math. Phys.
34
,
1
42
(
1955
).
5.
H.
Padé
, “
Sur la représentation approchée d’une fonction par des fractions rationnelles
,”
Ann. Sci. Ec. Norm. Super.
, Serie 3
9
,
3
93
(
1892
).
6.
K. D.
Housiadas
, “
Improved convergence based on linear and non-linear transformations at low and high Weissenberg asymptotic analysis
,”
J. Non-Newtonian Fluid Mech.
247
,
1
14
(
2017
).
7.
I. V.
Andrianov
,
Y.
Mikhlin
, and
S.
Tokarzewski
, “
Two-point Padé approximants and their applications to is solving mechanical problems
,”
J. Appl. Theor. Appl. Mech.
3
(
35
),
577
606
(
1997
).
8.
G. A.
Baker
and
P.
Graves-Morris
,
Padé Approximants. Part 1: Basic Theory
(
Addison-Wesley Publishing Co.
,
New York
,
1981
);
G. A.
Baker
and
P.
Graves-Morris
,
Padé Approximants. Part 2: Extensions and Applications
(
Addison-Wesley Publishing Co.
,
New York
,
1981
).
9.
G. A.
Baker
and
P.
Graves-Morris
,
Padé Approximants
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1996
).
10.
G. G.
Stokes
, “
On the effect of the internal friction of fluids on the motion of pendulums
,”
Trans. Cambridge Philos. Soc.
9
(
8
),
8
106
(
1851
)
G. G.
Stokes
, [Reprinted in
Mathematical and Physical Papers
, 2nd ed. (
Johnson Reprint Corp.
,
New York
,
1966
) Vol. 3, p. 1].
11.
H.
Giesekus
, “
Die Elastizität von Flüssigkeiten
,”
Rheol. Acta
5
,
29
35
(
1966
).
12.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
13.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
1987
), Vol.
1
.
14.
A. N.
Beris
and
B. J.
Edwards
,
Thermodynamics of Flowing Systems with Internal Microstructure
, 1st ed. (
Oxford Engineering Science Series
,
1994
), p.
36
.
15.
R. I.
Tanner
,
Engineering Rheology
, 2nd ed. (
Oxford University Press
,
New York
,
2000
).
16.
F. M.
Leslie
and with an appendix from
R. I.
Tanner
, “
The slow flow of a visco-elastic liquid past a sphere
,”
Q. J. Mech. Appl. Math.
14
,
36
48
(
1961
).
17.
B.
Caswell
and
W. H.
Schwarz
, “
The creeping flow of a non-Newtonian fluid past a sphere
,”
J. Fluid Mech.
13
,
417
426
(
1962
).
18.
H.
Giesekus
, “
Die simultane Translations- und Rotations- bewegung einer Kugel in einer elastovisken Flüssigkeit
,”
Rheol. Acta
3
,
59
71
(
1963
).
19.
K. D.
Housiadas
and
R. I.
Tanner
, “
The drag of a freely sedimentating sphere in a sheared weakly viscoelastic fluid
,”
J. Non-Newtonian Fluid Mech.
183–184
,
52
56
(
2012
).
20.
R. I.
Tanner
, “
Note for 100 years of Hanswalter Giesekus
,”
Phys. Fluids
34
,
103104
(
2022
).
21.
Wolfram Research, Inc
.,
Mathematica Edition: Version 13
(
Wolfram Research, Inc
.,
Champaign, IL
,
2022
).
22.
K. D.
Housiadas
and
R. I.
Tanner
, “
Rheological effects in the 3D creeping flow past a sedimenting sphere subject to orthogonal shear
,”
Phys. Fluids
26
,
013102
(
2014
).
23.
S. D.
Gkormpatsis
,
E. A.
Gryparis
,
K. D.
Housiadas
, and
A. N.
Beris
, “
Steady sphere translation in a viscoelastic fluid with slip on the surface of the sphere
,”
J. Non-Newtonian Fluid Mech.
275
,
104217
(
2020
).
24.
K. D.
Housiadas
, “
Steady sedimentation of a spherical particle under constant rotation
,”
Phys. Rev. Fluids
4
,
103301
(
2019
).
25.
A.
Zhang
,
W. L.
Murch
,
J.
Einarsson
, and
E. S. G.
Shaqfeh
, “
Lift and drag force on a spherical particle in a viscoelastic shear flow
,”
J. Non-Newtonian Fluid Mech.
280
,
104279
(
2020
).
26.
K. D.
Housiadas
and
R. I.
Tanner
, “
A high-order perturbation solution for the steady sedimentation of a sphere in a viscoelastic fluid
,”
J. Νon-Newtonian Fluid Mech.
233
,
166
180
(
2016
).
27.
N.
Phan-Thien
, “
A non-linear network viscoelastic model
,”
J. Rheol.
22
,
259
283
(
1978
).
28.
S. A.
Faroughi
,
C.
Fernandes
,
J. M.
Nóbrega
, and
G. H.
McKinley
, “
A closure model for the drag coefficient of a sphere translating in a viscoelastic fluid
,”
J. Non-Newtonian Fluid Mech.
277
,
104218
(
2020
).
You do not currently have access to this content.