In this work, we analyze the flow of a thin layer of viscous liquid over the outer surface of a sphere due to inertia and gravity. We use the classical problem of a circular hydraulic jump as a starting point and observe the changes in the flow structure as the gravity component along the surface becomes significant. We assume that the flow is stationary and axisymmetric, the curvature of the spherical surface is small, and the capillary forces are negligible. The depth-averaged thin-layer equations describe the flow. We perform a qualitative analysis using a one-parametric representation of the longitudinal velocity distribution and find the necessary conditions for the hydraulic jump existence. The intensity of the jump monotonically decreases, and its radius grows to a certain finite value. The jump vanishes at a finite distance from the axis of symmetry. Using a two-parametric representation, we locate zones of recirculating flow and find the condition of their existence. We find the optimal strategy of averaging by comparing the results of our calculations with the data obtained experimentally and by using simulations in the framework of the full Navier–Stokes equations.

1.
L.
Rayleigh
, “
On the theory of long waves and bores
,”
Proc. R. Soc. London, Ser. A
90
,
324
328
(
1914
).
2.
L.
Landau
and
E.
Lifshitz
, “
One-dimensional gas flow
,” in
Fluid Mechanics
, 2nd ed., edited by
L.
Landau
and
E.
Lifshitz
(
Pergamon
,
1987
), Chap. X, pp.
361
413
.
3.
V.
Kumar
,
I.
Ng
,
G. J.
Sheard
,
E.
Brocher
,
K.
Hourigan
, and
A.
Fouras
, “
Application of particle image velocimetry and reference image topography to jet shock cells using the hydraulic analogy
,”
Exp. Fluids
51
,
543
551
(
2011
).
4.
T.
Foglizzo
,
F.
Masset
,
J.
Guilet
, and
G.
Durand
, “
Shallow water analogue of the standing accretion shock instability: Experimental demonstration and a two-dimensional model
,”
Phys. Rev. Lett.
108
,
051103
(
2012
).
5.
A.
Porporato
,
L.
Ridolfi
, and
L.
Rondoni
, “
Hydrodynamic holes and Froude horizons: Circular shallow water profiles for astrophysical analogs
,”
Phys. Rev. Res.
3
,
023119
(
2021
).
6.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
7.
D.
Wang
,
H.
Jin
,
X.
Ling
,
H.
Peng
,
J.
Yu
, and
Z.
Cui
, “
Regulation of velocity zoning behaviour and hydraulic jump of impinging jet flow on a spinning disk reactor
,”
Chem. Eng. J.
390
,
124392
(
2020
).
8.
T.
Bohr
,
P.
Dimon
, and
V.
Putkaradze
, “
Shallow-water approach to the circular hydraulic jump
,”
J. Fluid Mech.
254
,
635
648
(
1993
).
9.
V.
Nakoryakov
,
B.
Pokusaev
, and
E.
Troyan
, “
Impingement of an axisymmetric liquid jet on a barrier
,”
Int. J. Heat Mass Transfer
21
,
1175
1184
(
1978
).
10.
I.
Tani
, “
Water jump in the boundary layer
,”
J. Phys. Soc. Jpn.
4
,
212
215
(
1949
).
11.
B. L.
Rozhdestvenskii
, “
Application of exact solutions of the ‘shallow water’ equations to the explanation of the simplest flows
,”
J. Appl. Mech. Tech. Phys.
20
,
140
143
(
1979
).
12.
A.
Duchesne
,
L.
Lebon
, and
L.
Limat
, “
Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection
,”
Europhys. Lett.
107
,
54002
(
2014
).
13.
N.
Rojas
,
M.
Argentina
, and
E.
Tirapegui
, “
A progressive correction to the circular hydraulic jump scaling
,”
Phys. Fluids
25
,
042105
(
2013
).
14.
A.
Ipatova
,
K.
Smirnov
, and
E.
Mogilevskiy
, “
Steady circular hydraulic jump on a rotating disk
,”
J. Fluid Mech.
927
,
A24
(
2021
).
15.
E. J.
Watson
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
,
481
499
(
1964
).
16.
F. J.
Higuera
, “
The hydraulic jump in a viscous laminar flow
,”
J. Fluid Mech.
274
,
69
92
(
1994
).
17.
R.
Fernandez-Feria
,
E.
Sanmiguel-Rojas
, and
E. S.
Benilov
, “
On the origin and structure of a stationary circular hydraulic jump
,”
Phys. Fluids
31
,
072104
(
2019
).
18.
B.
Mohajer
and
R.
Li
, “
Circular hydraulic jump on finite surfaces with capillary limit
,”
Phys. Fluids
27
,
117102
(
2015
).
19.
J. W. M.
Bush
and
J. M.
Aristoff
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
238
(
2003
).
20.
A.
Duchesne
and
L.
Limat
, “
Circular hydraulic jumps: Where does surface tension matter?
,”
J. Fluid Mech.
937
,
R2
(
2022
).
21.
H.
Askarizadeh
,
H.
Ahmadikia
,
C.
Ehrenpreis
,
R.
Kneer
,
A.
Pishevar
, and
W.
Rohlfs
, “
Role of gravity and capillary waves in the origin of circular hydraulic jumps
,”
Phys. Rev. Fluids
4
,
114002
(
2019
).
22.
Y.
Wang
and
R. E.
Khayat
, “
The effects of gravity and surface tension on the circular hydraulic jump for low- and high-viscosity liquids: A numerical investigation
,”
Phys. Fluids
33
,
012105
(
2021
).
23.
A.
Baayoun
,
R. E.
Khayat
, and
Y.
Wang
, “
The transient spread of a circular liquid jet and hydraulic jump formation
,”
J. Fluid Mech.
947
,
A34
(
2022
).
24.
R. K.
Bhagat
,
N. K.
Jha
,
P. F.
Linden
, and
D. I.
Wilson
, “
On the origin of the circular hydraulic jump in a thin liquid film
,”
J. Fluid Mech.
851
,
R5
(
2018
).
25.
G. J.
Jameson
,
C. E.
Jenkins
,
E. C.
Button
, and
J. E.
Sader
, “
Water bells formed on the underside of a horizontal plate. Part 1. Experimental investigation
,”
J. Fluid Mech.
649
,
19
43
(
2010
).
26.
R. K.
Bhagat
and
P. F.
Linden
, “
The circular capillary jump
,”
J. Fluid Mech.
896
,
A25
(
2020
).
27.
T.
Bohr
and
B.
Scheichl
, “
Surface tension and energy conservation in a moving fluid
,”
Phys. Rev. Fluids
6
,
L052001
(
2021
).
28.
C.
Ellegaard
,
A. E.
Hansen
,
A.
Haaning
,
K.
Hansen
,
A.
Marcussen
,
T.
Bohr
,
J. L.
Hansen
, and
S.
Watanabe
, “
Creating corners in kitchen sinks
,”
Nature
392
,
767
768
(
1998
).
29.
J.
Bush
,
J.
Aristoff
, and
A. E.
Hosoi
, “
An experimental investigation of the stability of the circular hydraulic jump
,”
J. Fluid Mech.
558
,
33
52
(
2006
).
30.
A. R.
Kasimov
, “
A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue
,”
J. Fluid Mech.
601
,
189
198
(
2008
).
31.
H.
Espig
and
R.
Hoyle
, “
Waves in a thin liquid layer on a rotating disk
,”
J. Fluid Mech.
22
,
671
677
(
1965
).
32.
V.
Shkadov
,
Some Methods and Problems of the Theory of Hydrodynamic Stability
(
Institute of Mechanics of Lomonosov Moscow State University
,
Moscow
,
1973
), Vol.
25
.
33.
A. A.
Osiptsov
, “
Steady film flow of a highly viscous heavy fluid with mass supply
,”
Fluid Dyn.
38
,
846
853
(
2003
).
34.
E. I.
Mogilevskii
and
V. Y.
Shkadov
, “
Thin viscous fluid film flows over rotating curvilinear surfaces
,”
Fluid Dyn.
44
,
189
201
(
2009
).
35.
P.
Kapitza
and
S.
Kapitza
, “
Wavy flow of thin layers of a viscous fluid
,”
Z. Eksp. Teor. Fiz.
19
,
105
120
(
1949
);
P.
Kapitza
and
S.
Kapitza
Wave flow of thin layers of a viscous fluid
,” in
Collected Papers of P. L. Kapitza
, edited by
D.
ter Haar
(Pergamon, 1965), pp.
662
709
.
36.
G. M.
Sisoev
,
O. K.
Matar
, and
C. J.
Lawrence
, “
Axisymmetric wave regimes in viscous liquid film flow over a spinning disk
,”
J. Fluid Mech.
495
,
385
411
(
2003
).
37.
C.
Yih
, “
Stability of liquid flow down an inclined plane
,”
Phys. Fluids
6
,
321
334
(
1963
).
38.
B.
Scheichl
and
A.
Kluwick
, “
Laminar spread of a circular liquid jet impinging axially on a rotating disc
,”
J. Fluid Mech.
864
,
449
489
(
2019
).
39.
Y.
Wang
and
R. E.
Khayat
, “
Impinging jet flow and hydraulic jump on a rotating disk
,”
J. Fluid Mech.
839
,
525
560
(
2018
).
40.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
(
Springer
,
Berlin, Heidelberg
,
2016
).
41.
V. Y.
Shkadov
, “
Wave flow regimes of a thin layer of viscous fluid subject to gravity
,”
Fluid Dyn.
2
,
29
34
(
1967
).
42.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M.
Velarde
,
Falling Liquid Films
, Applied Mathematical Sciences (
Springer
,
London
,
2011
).
43.
Hydraulics of Open Channel Flow
, 2nd ed., edited by
H.
Chanson
(
Butterworth-Heinemann
,
Oxford
,
2004
).
44.
S.
Watanabe
,
V.
Putkaradze
, and
T.
Bohr
, “
Integral methods for shallow free-surface flows with separation
,”
J. Fluid Mech.
480
,
233
265
(
2003
).
45.
V. M.
Teshukov
, “
Gas-dynamic analogy for vortex free-boundary flows
,”
J. Appl. Mech. Tech. Phys.
48
,
303
309
(
2007
).
46.
K. A.
Ivanova
and
S. L.
Gavrilyuk
, “
Structure of the hydraulic jump in convergent radial flows
,”
J. Fluid Mech.
860
,
441
464
(
2019
).
47.
G. L.
Richard
and
S. L.
Gavrilyuk
, “
The classical hydraulic jump in a model of shear shallow-water flows
,”
J. Fluid Mech.
725
,
492
521
(
2013
).
48.
S.
Gavrilyuk
,
K.
Ivanova
, and
N.
Favrie
, “
Multi-dimensional shear shallow water flows: Problems and solutions
,”
J. Comput. Phys.
366
,
252
280
(
2018
).
49.
A.
Saberi
,
A.
Teymourtash
, and
M. R.
Mahpeykar
, “
Experimental and numerical study of circular hydraulic jumps on convex and flat target plates
,”
Eur. J. Mech.-B
80
,
32
41
(
2020
).
50.
A.
Saberi
,
M.
Mahpeykar
, and
A.
Teymourtash
, “
Experimental measurement of radius of circular hydraulic jumps: Effect of radius of convex target plate
,”
Flow Meas. Instrum.
65
,
274
279
(
2019
).
51.
P.-G.
De Gennes
,
F.
Brochard-Wyart
,
D.
Quéré
 et al.,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
2004
), Vol.
315
.
52.
B.
Ozar
,
B. M.
Cetegen
, and
A.
Faghri
, “
Experiments on the flow of a thin liquid film over a horizontal stationary and rotating disk surface
,”
Exp. Fluids
34
,
556
565
(
2003
).
53.
A.
Duchesne
,
A.
Andersen
, and
T.
Bohr
, “
Surface tension and the origin of the circular hydraulic jump in a thin liquid film
,”
Phys. Rev. Fluids
4
,
084001
(
2019
).
You do not currently have access to this content.