The small intestine is the primary site of enzymatic digestion and nutrient absorption in humans. Intestinal contractions facilitate digesta transport, mixing, and contact with the absorptive surfaces. Previous computational models have been limited to idealized contraction patterns and/or simplified geometries to study digesta transport. This study develops a physiologically realistic model of flow and mixing in the first segment of the small intestine (duodenum) based upon a geometry obtained from the Visible Human Project dataset and contraction patterns derived from electrophysiological simulations of slow wave propagation. Features seen in previous simpler models, such as reversed flow underneath the contracting region, were also present in this model for water, Newtonian liquid digesta, and non-Newtonian (power law) whole digesta. An increase in the contraction amplitude from 10% to 50% resulted in faster transport with mean speeds over a cycle increasing from 1.7 to 8.7 mm/s. Glucose transport was advection dominated with Peclet numbers greater than 104. A metric of glucose mixing was computed, with 0 representing no mixing and 1 representing perfect mixing. For antegrade contractions at a 50% amplitude, the metric after 60 s was 0.99 for water, 0.6 for liquid digesta, and 0.19 for whole digesta. Retrograde contractions had a negligible impact on the flow and mixing. Colliding wavefronts resulted in swirling flows and increased the mixing metric by up to 2.6 times relative to antegrade slow wave patterns. The computational framework developed in this study provides new tools for understanding the mixing and nutrient absorption patterns under normal and diseased conditions.

1.
R. M.
Berne
and
M. N.
Levy
,
Principles of Physiology
(
Mosby Incorporated
,
2000
).
2.
J. T.
Collins
,
A.
Nguyen
, and
M.
Badireddy
, “
Anatomy, abdomen and pelvis, small intestine
,” in
StatPearls
(
StatPearls Publishing
,
Treasure Island, FL
,
2022
).
3.
K. E.
Barrett
,
S. M.
Barman
,
S.
Boitano
, and
H.
Brooks
,
Ganong's Review of Medical Physiology
, 25th ed. (
McGraw Hill
,
2015
).
4.
L.
Fullard
,
W.
Lammers
,
G. C.
Wake
, and
M. J.
Ferrua
, “
Propagating longitudinal contractions in the ileum of the rabbit–efficiency of advective mixing
,”
Food Funct.
5
,
2731
2742
(
2014
).
5.
J.
Feher
, “
Chapter 8.3 - Intestinal and colonic motility
,” in
Quantitative Human Physiology
(
Academic Press
,
Boston
,
2012
), pp.
711
720
.
6.
T. R.
Angeli
,
G.
O'Grady
,
N.
Paskaranandavadivel
,
J. C.
Erickson
,
P.
Du
,
A. J.
Pullan
,
I. P.
Bissett
, and
L. K.
Cheng
, “
Experimental and automated analysis techniques for high-resolution electrical mapping of small intestine slow wave activity
,”
J. Neurogastroenterol. Motil.
19
,
179
(
2013
).
7.
J.
Barr
and
R. R.
White
, “
Chapter 65—Motility disorders of the stomach and small intestine
,” in
Shackelford's Surgery of the Alimentary Tract, 2 Volume Set
, 8th ed. (
Elsevier
,
Philadelphia
,
2019
), pp.
755
763
.
8.
M.
El-Salhy
, “
Recent developments in the pathophysiology of irritable bowel syndrome
,”
World J. Gastroenterol.
21
,
7621
(
2015
).
9.
J. M.
Froehlich
,
M. A.
Patak
,
C.
von Weymarn
,
C. F.
Juli
,
C. L.
Zollikofer
, and
K.-U.
Wentz
, “
Small bowel motility assessment with magnetic resonance imaging
,”
J. Magn. Reson. Imaging
21
,
370
375
(
2005
).
10.
F. N.
Christensen
,
S. S.
Davis
,
J. G.
Hardy
,
M. J.
Taylor
,
D. R.
Whalley
, and
C. G.
Wilson
, “
The use of gamma scintigraphy to follow the gastrointestinal transit of pharmaceutical formulations
,”
J. Pharm. Pharmacol.
37
,
91
95
(
2011
).
11.
H.
Yamamoto
,
H.
Kita
,
K.
Sunada
,
Y.
Hayashi
,
H.
Sato
,
T.
Yano
,
M.
Iwamoto
,
Y.
Sekine
,
T.
Miyata
,
A.
Kuno
,
H.
Ajibe
,
K.
Ido
, and
K.
Sugano
, “
Clinical outcomes of double-balloon endoscopy for the diagnosis and treatment of small-intestinal diseases
,”
Clin. Gastroenterol. Hepatol.
2
,
1010
1016
(
2004
).
12.
P.
Kerlin
,
A.
Zinsmeister
, and
S.
Phillips
, “
Relationship of motility to flow of contents in the human small intestine
,”
Gastroenterology
82
,
701
706
(
1982
).
13.
A.
Gutzeit
,
M. A.
Patak
,
C.
von Weymarn
,
N.
Graf
,
A.
Doert
,
E.
Willemse
,
C. A.
Binkert
, and
J. M.
Froehlich
, “
Feasibility of small bowel flow rate measurement with mri
,”
J. Magn. Reson. Imaging
32
,
345
351
(
2010
).
14.
M.
Camilleri
, “
Novel diet, drugs, and gastric interventions for gastroparesis
,”
Clin. Gastroenterol. Hepatol.
14
,
1072
1080
(
2016
).
15.
H.
Imam
,
C.
Sanmiguel
,
B.
Larive
,
Y.
Bhat
, and
E.
Soffer
, “
Study of intestinal flow by combined videofluoroscopy, manometry, and multiple intraluminal impedance
,”
Am. J. Physiol.-Gastrointest. Liver Physiol.
286
,
G263
G270
(
2004
).
16.
M. D.
Sinnott
,
P. W.
Cleary
, and
S. M.
Harrison
, “
Peristaltic transport of a particulate suspension in the small intestine
,”
Appl. Math. Modell.
44
,
143
159
(
2017
).
17.
B.
Jeffrey
,
H. S.
Udaykumar
, and
K. S.
Schulze
, “
Flow fields generated by peristaltic reflex in isolated guinea pig ileum: Impact of contraction depth and shoulders
,”
Am. J. Physiol.-Gastrointest. Liver Physiol.
285
,
G907
G918
(
2003
).
18.
T.
Oyama
,
S.
Ishida
,
K.
Maeyama
,
T.
Miyagawa
, and
Y.
Imai
, “
Liquid transport produced by a cluster of peristaltic contractions in a circular channel
,”
Phys. Rev. Fluids
6
,
093102
(
2021
).
19.
R.
Love
,
R.
Lentle
,
P.
Asvarujanon
,
Y.
Hemar
, and
K.
Stafford
, “
An Expanded Finite Element Model of the Intestinal Mixing of Digesta
,”
Food Dig.
4
,
26
35
(
2013
).
20.
L. A.
Fullard
,
W. J.
Lammers
, and
M. J.
Ferrua
, “
Advective mixing due to longitudinal and segmental contractions in the ileum of the rabbit
,”
J. Food Eng.
160
,
1
10
(
2015
).
21.
C.
De Loubens
,
R. G.
Lentle
,
R. J.
Love
,
C.
Hulls
, and
P. W.
Janssen
, “
Fluid mechanical consequences of pendular activity, segmentation and pyloric outflow in the proximal duodenum of the rat and the guinea pig
,”
J. R. Soc. Interface
10
,
20130027
(
2013
).
22.
J.
Zha
,
S.
Zou
,
J.
Hao
,
X.
Liu
,
G.
Delaplace
,
R.
Jeantet
,
D.
Dupont
,
P.
Wu
,
X. D.
Chen
, and
J.
Xiao
, “
The role of circular folds in mixing intensification in the small intestine: A numerical study
,”
Chem. Eng. Sci.
229
,
116079
(
2021
).
23.
M. D.
Sinnott
,
P. W.
Cleary
,
J. W.
Arkwright
, and
P. G.
Dinning
, “
Investigating the relationships between peristaltic contraction and fluid transport in the human colon using smoothed particle hydrodynamics
,”
Comput. Biol. Med.
42
,
492
503
(
2012
).
24.
B.
Hari
,
S.
Bakalis
, and
P.
Fryer
, “
Computational modelling and simulation of the human duodenum
,” in
Proceedings of the Excerpt from the Proceedings of the COMSOL Conference in Milan Italy
(COMSOL,
2012
).
25.
J.
Karthikeyan
,
D.
Salvi
, and
M. V.
Karwe
, “
Modeling of fluid flow, carbohydrate digestion, and glucose absorption in human small intestine
,”
J. Food Eng.
292
,
110339
(
2021
).
26.
R. J.
Amedzrovi Agbesi
and
N. R.
Chevalier
, “
Flow and mixing induced by single, colinear, and colliding contractile waves in the intestine
,”
Phys. Rev. Fluids
7
,
043101
(
2022
).
27.
K.
Maeyama
,
S.
Ishida
, and
Y.
Imai
, “
Peristaltic transport of a power-law fluid induced by a single wave: A numerical analysis using the cumulant lattice Boltzmann method
,”
Phys. Fluids
34
,
111911
(
2022
).
28.
P.
Trusov
,
N. V.
Zaitseva
, and
M.
Kamaltdinov
, “
A multiphase flow in the antroduodenal portion of the gastrointestinal tract: A mathematical model
,”
Comput. Math. Methods Med.
2016
,
5164047
(
2016
).
29.
R. G.
Lentle
,
C.
De Loubens
,
C.
Hulls
,
P. W. M.
Janssen
,
M. D.
Golding
, and
J. P.
Chambers
, “
A comparison of the organization of longitudinal and circular contractions during pendular and segmental activity in the duodenum of the rat and guinea pig
,”
Neurogastroenterol. Motil.
24
,
686
e298
(
2012
).
30.
A.
Lin
,
M.
Buist
,
L.
Cheng
,
N.
Smith
, and
A.
Pullan
, “
Computational simulations of the human magneto-and electroenterogram
,”
Ann. Biomed. Eng.
34
,
1322
1331
(
2006
).
31.
P.
Du
,
G.
O'Grady
, and
L. K.
Cheng
, “
A theoretical analysis of anatomical and functional intestinal slow wave re-entry
,”
J. Theor. Biol.
425
,
72
79
(
2017
).
32.
M.
Ackerman
, “
The Visible Human Project
,”
Proc. IEEE
86
,
504
511
(
1998
).
33.
A.
Pullan
,
L.
Cheng
,
R.
Yassi
, and
M.
Buist
, “
Modelling gastrointestinal bioelectric activity
,”
Prog. Biophys. Mol. Biol.
85
,
523
550
(
2004
).
34.
P.
Du
,
N.
Paskaranandavadivel
,
G.
O'Grady
,
S.-J.
Tang
, and
L. K.
Cheng
, “
A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry
,”
Math. Med. Biol.
32
,
405
423
(
2014
).
35.
S.
Blackett
,
D.
Bullivant
,
C.
Stevens
, and
P.
Hunter
, “
Open source software infrastructure for computational biology and visualization
,” in
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
(
IEEE
,
2006
), pp.
6079
6080
.
36.
T. R.
Angeli
,
G.
O'Grady
,
R.
Vather
,
I. P.
Bissett
, and
L. K.
Cheng
, “
Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results
,”
Neurogastroenterol. Motil.
30
,
e13310
(
2018
).
37.
J. A.
Clifton
,
J.
Christensen
, and
H.
Schedl
, “
The Human Small Intestinal Slow Wave
,”
Trans. Am. Clin. Climatol. Assoc.
77
,
217
(
1966
).
38.
M.
Trew
,
I. L.
Grice
,
B.
Smaill
, and
A.
Pullan
, “
A finite volume method for modeling discontinuous electrical activation in cardiac tissue
,”
Ann. Biomed. Eng.
33
,
590
602
(
2005
).
39.
S.
Bickelhaupt
,
J.
Froehlich
,
R.
Cattin
,
N.
Patuto
,
R.
Tutuian
,
K.
Wentz
,
J.
Culmann
,
S.
Raible
,
H.
Bouquet
,
U.
Bill
, and
M.
Patak
, “
Differentiation between active and chronic Crohn's disease using MRI small-bowel motility examinations—Initial experience
,”
Clin. Radiol.
68
,
1247
1253
(
2013
).
40.
A.
Fuyuki
,
H.
Ohkubo
,
T.
Higurashi
,
H.
Iida
,
Y.
Inoh
,
M.
Inamori
, and
A.
Nakajima
, “
Clinical importance of cine-MRI assessment of small bowel motility in patients with chronic intestinal pseudo-obstruction: A retrospective study of 33 patients
,”
J. Gastroenterol.
52
,
577
584
(
2017
).
41.
W. J. E. P.
Lammers
and
J. R.
Slack
, “
Of slow waves and spike patches
,”
Physiology
16
,
138
144
(
2001
).
42.
T. R.
Angeli
,
G.
O'Grady
,
P.
Du
,
N.
Paskaranandavadivel
,
A. J.
Pullan
,
I. P.
Bissett
, and
L. K.
Cheng
, “
Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine
,”
Neurogastroenterol. Motil.
25
,
e304
e314
(
2013
).
43.
See https://www.meshmixer.com/ for Autodesk, “
Meshmixer 3.5
” (
2018
).
44.
F.
Juretić
,
cfMesh User Guide v. 1.1
(
Croatia
,
Creative Fields, Ltd.
,
2015
).
45.
M.
Tezzele
,
N.
Demo
,
A.
Mola
, and
G.
Rozza
, “
Pygem: Python geometrical morphing
,”
Software Impacts
7
,
100047
(
2021
).
46.
R.
Lentle
and
C. D.
Loubens
, “
A review of mixing and propulsion of chyme in the small intestine: Fresh insights from new methods
,”
J. Comp. Physiol. B
185
,
369
387
(
2015
).
47.
D.
McDonald
,
D.
Pethick
,
B.
Mullan
, and
D.
Hampson
, “
Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic escherichia coli in newly-weaned pigs
,”
Br. J. Nutr.
86
,
487
498
(
2001
).
48.
K. J.
Shelat
,
T.
Nicholson
,
B. M.
Flanagan
,
D.
Zhang
,
B. A.
Williams
, and
M. J.
Gidley
, “
Rheology and microstructure characterisation of small intestinal digesta from pigs fed a red meat-containing Western-style diet
,”
Food Hydrocolloids
44
,
300
308
(
2015
).
49.
A. N.
Bashkatov
,
E. A.
Genina
,
Y. P.
Sinichkin
,
V. I.
Kochubey
,
N. A.
Lakodina
, and
V. V.
Tuchin
, “
Glucose and mannitol diffusion in human dura mater
,”
Biophys. J.
85
,
3310
3318
(
2003
).
50.
S.
Ishida
,
T.
Miyagawa
,
G.
O'Grady
,
L. K.
Cheng
, and
Y.
Imai
, “
Quantification of gastric emptying caused by impaired coordination of pyloric closure with antral contraction: A simulation study
,”
J. Roy. Soc. Interface
16
,
20190266
(
2019
).
51.
J.
Fahlbeck
, “
Implementation of an incompressible headLossPressure boundary condition
,” in
Proceedings of CFD with OpenSource Software
, edited by H. Nilsson (2020), see .
52.
J. B.
Leiper
, “
Fate of ingested fluids: Factors affecting gastric emptying and intestinal absorption of beverages in humans
,”
Nutr. Rev.
73
,
57
72
(
2015
).
53.
N.
Palmada
,
J. E.
Cater
,
L. K.
Cheng
, and
V.
Suresh
, “
Experimental and computational studies of peristaltic flow in a duodenal model
,”
Fluids
7
,
40
(
2022
).
54.
A.
Cherian Abraham
,
L. K.
Cheng
,
T. R.
Angeli
,
S.
Alighaleh
, and
N.
Paskaranandavadivel
, “
Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping
,”
Neurogastroenterol. Motil.
31
,
e13670
(
2019
).
55.
J.
Christensen
,
H. P.
Schedl
, and
J. A.
Clifton
, “
The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with a variety of diseases
,”
Gastroenterology
50
,
309
315
(
1966
).
56.
A.
Øigaard
and
S.
Dorph
, “
The relative significance of electrical spike potentials and intraluminal pressure waves as quantitative indicators of motility
,”
Am. J. Dig. Dis.
19
,
797
803
(
1974
).
57.
R. W.
Summers
and
N. S.
Dusdieker
, “
Patterns of spike burst spread and flow in the canine small intestine
,”
Gastroenterology
81
,
742
750
(
1981
).
58.
A.
Mercado-Perez
and
A.
Beyder
, “
Gut feelings: Mechanosensing in the gastrointestinal tract
,”
Nat. Rev. Gastroenterol. Hepatol.
19
,
283
296
(
2022
).
59.
Y. F.
Lim
,
C.
de Loubens
,
R. J.
Love
,
R. G.
Lentle
, and
P. W. M.
Janssen
, “
Flow and mixing by small intestine villi
,”
Food Funct.
6
,
1787
1795
(
2015
).
60.
Y.
Wang
,
J. G.
Brasseur
,
G. G.
Banco
,
A. G.
Webb
,
A. C.
Ailiani
, and
T.
Neuberger
, “
A multiscale lattice Boltzmann model of macro- to micro-scale transport, with applications to gut function
,”
Philos. Trans. R. Soc. A
368
,
2863
2880
(
2010
).
61.
Z.-J.
Guo
,
Y.-F.
Chen
,
Y.-H.
Zhang
,
F.-J.
Meng
,
Q.
Lin
,
B.
Cao
,
X.-R.
Zi
,
J.-Y.
Lu
,
M.-H.
An
, and
Y.-J.
Wang
, “
CT virtual endoscopy of the ampulla of vater: preliminary report
,”
Abdom. Imaging
36
,
514
519
(
2011
).
62.
P. J.
Howard
,
G. M.
Murphy
, and
R. H.
Dowling
, “
Gall bladder emptying patterns in response to a normal meal in healthy subjects and patients with gall stones: Ultrasound study
,”
Gut
32
,
1406
1411
(
1991
).
63.
S. J.
Pandol
, “
Chapter 56 - Pancreatic secretion
,” in
Sleisenger and Fordtran's Gastrointestinal and Liver Disease
, 9th ed. (
W.B. Saunders
,
Philadelphia
,
2010
), pp.
921
930.e2
.
64.
M.
Herath
,
S.
Hosie
,
J. C.
Bornstein
,
A. E.
Franks
, and
E. L.
Hill-Yardin
, “
The role of the gastrointestinal mucus system in intestinal homeostasis: Implications for neurological disorders
,”
Front. Cell. Infect. Microbiol.
10
,
248
(
2020
).
65.
Y.
Nigam
,
J.
Knight
, and
N.
Williams
, “
Gastrointestinal tract 4: Anatomy and role of the jejunum and ileum
,”
Nurs. Times
115
,
41
44
(
2019
).
66.
N.
Afshar
,
S.
Safaei
,
D. P.
Nickerson
,
P. J.
Hunter
, and
V.
Suresh
, “
Computational modelling of glucose uptake by sglt1 and apical glut2 in the enterocyte
,”
Front. Physiol.
12
,
699152
(
2021
).
You do not currently have access to this content.