Tetrahydrofuran (THF) is fully miscible in water, and it interacts with it via hydrogen (H) bonds. We discover that the fatty acid hydroxystearic acid (HSA) separates THF from water because it preferentially H-bonds water and increases the proportion of single H-bond donors (SD) relative to double H-bond donors (DD). This change in the coordination of water molecules from DD to SD leads to phase separation between THF and water. We previously established this separation mechanism using sugars and surfactants and other water miscible solvents. Here, we use attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) to prove that this mechanism is also responsible for THF–water separation using HSA, thereby demonstrating the universality of the proposed separation mechanism. Using synchrotron small-angle x-ray scattering, we show how HSA self-assembles into reverse micelles in THF–water mixtures and determine their persistence length and periodicity using a modified Landau model. Reverse micelles host water in their interior and swell upon increasing the water content, as shown by light scattering. They then turn into droplets detectable using optical or confocal microscopy. When THF–water emulsions separate, they yield water-rich and THF-rich free phases. ATR-FTIR reveals that the top phase of THF–water mixtures separated by HSA is THF-rich. Moreover, when Cu2+ ions are in solution, HSA causes their migration into the THF-rich phase, enabling the simultaneous separation of THF and Cu2+ cations from water. This study demonstrates the potential for engineering the water structure to aid in the separation of water-miscible solvents from water with important implications for water treatment.

1.
Q.
Li
,
J.
Xia
,
B.
Dong
, and
M.
Zhou
, “
Near-field flow dynamics of grate inlets during urban floods
,”
Phys. Fluids
34
,
087111
(
2022
).
2.
S.
Mukherjee
,
A.
Mishra
, and
K. E.
Trenberth
, “
Climate change and drought: A perspective on drought indices
,”
Curr. Clim. Change Rep.
4
,
145
163
(
2018
).
3.
Z.
Zhang
,
P.
Huang
,
G.
Bitsuamlak
, and
S.
Cao
, “
Large-eddy simulation of wind-turbine wakes over two-dimensional hills
,”
Phys. Fluids
34
,
065123
(
2022
).
4.
C. M.
Sales
,
A.
Grostern
,
J. V.
Parales
,
R. E.
Parales
, and
L.
Alvarez-Cohen
, “
Oxidation of the cyclic ethers 1, 4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species
,”
Appl. Environ. Microbiol.
79
,
7702
7708
(
2013
).
5.
Y.
Yin
,
Y.
Yang
,
M.
de Lourdes Mendoza
,
S.
Zhai
,
W.
Feng
,
Y.
Wang
,
M.
Gu
,
L.
Cai
, and
L.
Zhang
, “
Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater
,”
J. Cleaner Prod.
144
,
180
186
(
2017
).
6.
T.
Marshall
,
A. G.
Marangoni
,
T.
Laredo
,
M. S.
Al-Abdul-Wahid
, and
E.
Pensini
, “
Mechanisms of solvent separation using sugars and sugar alcohols
,”
Colloids Surf. A
642
,
128707
(
2022
).
7.
M.
Heinen
,
M.
Hoffmann
,
F.
Diewald
,
S.
Seckler
,
K.
Langenbach
, and
J.
Vrabec
, “
Droplet coalescence by molecular dynamics and phase-field modeling
,”
Phys. Fluids
34
,
042006
(
2022
).
8.
H.
Benabdelhalim
and
D.
Brutin
, “
Phase separation and spreading dynamics of French vinaigrette
,”
Phys. Fluids
34
,
012120
(
2022
).
9.
D.
Hu
,
X.
Li
,
Z.
Chen
,
Y.
Cui
,
F.
Gu
,
F.
Jia
,
T.
Xiao
,
H.
Su
,
J.
Xu
,
H.
Wang
, and
P.
Wu
, “
Performance and extracellular polymers substance analysis of a pilot scale anaerobic membrane bioreactor for treating tetrahydrofuran pharmaceutical wastewater at different HRTs
,”
J. Hazard. Mater.
342
,
383
391
(
2018
).
10.
X.
Mei
,
Y.
Chen
,
C.
Fang
,
L.
Xu
,
J.
Li
,
S.
Bi
,
J.
Liu
,
Y.
Wang
,
P.
Li
,
Z.
Guo
, and
H.
Qin
, “
Acetonitrile wastewater treatment enhanced by a hybrid membrane-aerated bioreactor containing aerated and non-aerated zones
,”
Bioresour. Technol.
289
,
121754
(
2019
).
11.
T.
Li
,
J.
Liu
,
R.
Bai
,
D. G.
Ohandja
, and
F. S.
Wong
, “
Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms
,”
Water Res.
41
,
3465
3473
(
2007
).
12.
C. C.
Raj
and
H. L.
Quen
, “
Advanced oxidation processes for wastewater treatment: Optimization of UV/H2O2 process through a statistical technique
,”
Chem. Eng. Sci.
60
,
5305
5311
(
2005
).
13.
Y.
Wang
,
X.
Mei
,
T.
Ma
,
C.
Xue
,
M.
Wu
,
M.
Ji
, and
Y.
Li
, “
Green recovery of hazardous acetonitrile from high-salt chemical wastewater by pervaporation
,”
J. Cleaner Prod.
197
,
742
749
(
2018
).
14.
X.
Mei
,
Y.
Ding
,
P.
Li
,
L.
Xu
,
Y.
Wang
,
Z.
Guo
,
W.
Shen
,
Y.
Yang
,
Y.
Wang
,
Y.
Xiao
, and
X.
Yang
, “
A novel system for zero-discharge treatment of high-salinity acetonitrile-containing wastewater: Combination of pervaporation with a membrane-aerated bioreactor
,”
Chem. Eng. J.
384
,
123338
(
2020
).
15.
M.
Tabata
,
M.
Kumamoto
, and
J.
Nishimoto
, “
Chemical properties of water-miscible solvents separated by salting-out and their application to solvent extraction
,”
Anal. Sci.
10
,
383
388
(
1994
).
16.
R. L.
Souza
,
R. A.
Lima
,
J. A.
Coutinho
,
C. M.
Soares
, and
Á. S.
Lima
, “
Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification
,”
Sep. Purif. Technol.
155
,
118
126
(
2015
).
17.
B.
Wang
,
T.
Ezejias
,
H.
Feng
, and
H.
Blaschek
, “
Sugaring-out: A novel phase separation and extraction system
,”
Chem. Eng. Sci.
63
,
2595
2600
(
2008
).
18.
P. B.
Dhamole
,
P.
Mahajan
, and
H.
Feng
, “
Phase separation conditions for sugaring-out in acetonitrile−water systems
,”
J. Chem. Eng. Data
55
,
3803
3806
(
2010
).
19.
G.
de Brito Cardoso
,
I.
Nascimento Souza
,
T.
Mourão
,
M. G.
Freire
,
C. M. F.
Soares
, and
Á. S.
Lima
, “
Novel aqueous two-phase systems composed of acetonitrile and polyols: Phase diagrams and extractive performance
,”
Sep. Purif. Technol.
124
,
54
60
(
2014
).
20.
T.
Marshall
,
L.
Earnden
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Cubic mesophases of self-assembled amphiphiles separate miscible solvents
,”
Colloids Surf. A
650
,
129548
(
2022
).
21.
D. A.
Grahame
,
C.
Olauson
,
R. S.
Lam
,
T.
Pedersen
,
F.
Borondics
,
S.
Abraham
,
R. G.
Weiss
, and
M. A.
Rogers
, “
Influence of chirality on the modes of self-assembly of 12-hydroxystearic acid in molecular gels of mineral oil
,”
Soft Matter
7
,
7359
7365
(
2011
).
22.
A. L.
Fameau
and
M. A.
Rogers
, “
The curious case of 12-hydroxystearic acid—The Dr
.
Jekyll Mr. Hyde of molecular gelators,” Curr. Opin. Colloid Interface Sci.
45
,
68
82
(
2020
).
23.
B.
Novales
,
L.
Navailles
,
M.
Axelos
,
F.
Nallet
, and
J. P.
Douliez
, “
Self-assembly of fatty acids and hydroxyl derivative salts
,”
Langmuir
24
,
62
68
(
2008
).
24.
M. A.
Rogers
,
A. J.
Wright
, and
A. G.
Marangoni
, “
Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils
,”
Soft Matter
4
,
1483
1490
(
2008
).
25.
X.
Huang
and
R. G.
Weiss
, “
Molecular organogels of the sodium salt of (R)-12-hydroxystearic acid and their templated syntheses of inorganic oxides
,”
Tetrahedron
63
,
7375
7385
(
2007
).
26.
W.-H.
Huang
,
C.-D.
Dong
,
C.-W.
Chen
,
R. Y.
Surampalli
, and
C.-M.
Kao
, “
Application of sulfate reduction mechanisms for the simultaneous bioremediation of toluene and copper contaminated groundwater
,”
Int. Biodeterior. Biodegrad.
124
,
215
222
(
2017
).
27.
C. N.
Mulligan
,
R. N.
Yong
, and
B. F.
Gibbs
, “
Remediation technologies for metal-contaminated soils and groundwater: An evaluation
,”
Eng. Geol.
60
,
193
207
(
2001
).
28.
A.
Arjoon
,
A. O.
Olaniran
, and
B.
Pillay
, “
Co-contamination of water with chlorinated hydrocarbons and heavy metals: Challenges and current bioremediation strategies
,”
Int. J. Environ. Sci. Technol.
10
,
395
412
(
2013
).
29.
Q.
Li
,
P.
You
,
Q.
Hu
,
B.
Leng
,
J.
Wang
,
J.
Chen
,
S.
Wan
,
B.
Wang
,
C.
Yuan
,
R.
Zhou
, and
K.
Ouyang
, “
Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution
,”
Ecotoxicol. Environ. Safety
204
,
111083
(
2020
).
30.
F.
Chen
,
Z.
Luo
,
J.
Ma
,
S.
Zeng
,
Y.
Yang
, and
S.
Zhang
, “
Interaction of cadmium and polycyclic aromatic hydrocarbons in co-contaminated soil
,”
Water, Air, Soil Pollut.
229
,
114
(
2018
).
31.
Y.
Sun
,
Q.
Zhou
,
Y.
Xu
,
L.
Wang
, and
X.
Liang
, “
Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula
,”
J. Hazard. Mater.
186
,
2075
2082
(
2011
).
32.
F.
Li
,
D.
Deng
,
L.
Zeng
,
S.
Abrams
, and
M.
Li
, “
Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1, 4-dioxane
,”
Sci. Total Environ.
774
,
145118
(
2021
).
33.
E.
Syranidou
,
S.
Christofilopoulos
, and
N.
Kalogerakis
, “
Juncus spp.—The helophyte for all (phyto) remediation purposes?
,”
New Biotechnol.
38
,
43
55
(
2017
).
34.
A.
Telepanich
,
T.
Marshall
,
S.
Gregori
,
A. G.
Marangoni
, and
E.
Pensini
, “
Graphene-alginate fluids as unconventional electrodes for the electrokinetic remediation of Cr(VI)
,”
Water, Air, Soil Pollut.
232
,
334
(
2021
).
35.
A. N.
Alshawabkeh
, “
Electrokinetic soil remediation: Challenges and opportunities
,”
Sep. Sci. Technol.
44
,
2171
2187
(
2009
).
36.
B.
Gidudu
and
E. M. N.
Chirwa
, “
The combined application of a high voltage, low electrode spacing, and biosurfactants enhances the bio-electrokinetic remediation of petroleum contaminated soil
,”
J. Cleaner Prod.
276
,
122745
(
2020
).
37.
S. O.
Kim
,
J. Y.
Jeong
,
W. C.
Lee
,
S. T.
Yun
, and
H. Y.
Jo
, “
Electrokinetic remediation of heavy metal-contaminated soils: Performance comparison between one-and two-dimensional electrode configurations
,”
J. Soils Sediments
21
,
2755
2715
(
2021
).
38.
W. S.
Kim
,
E. K.
Jeon
,
J. M.
Jung
,
H. B.
Jung
,
S. H.
Ko
,
C. I.
Seo
, and
K.
Baek
, “
Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration
,”
Environ. Sci. Pollut. Res.
21
,
4482
4491
(
2014
).
39.
T.
Marshall
,
A.
Gravelle
,
A. G.
Marangoni
,
A.
Elsayed
, and
E.
Pensini
, “
Zein for hydrocarbon remediation: Emulsifier, trapping agent, or both?
,”
Colloids Surf. A
589
,
124456
(
2020
).
40.
D. C.
Tsang
,
W.
Zhang
, and
I. M.
Lo
, “
Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils
,”
Chemosphere
68
,
234
243
(
2007
).
41.
E.
Pensini
,
T.
Laredo
,
L.
Earnden
,
A. G.
Marangoni
, and
S. M.
Ghazani
, “
A ‘three in one’ complexing agent enables copper desorption from polluted soil, its removal from groundwater and its detection
,”
Colloids Surf. A
624
,
126840
(
2021
).
42.
Y.
Pan
,
R. V.
Tikekar
,
M. S.
Wang
,
R. J.
Avena-Bustillos
, and
N.
Nitin
, “
Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds
,”
Food Hydrocolloids
43
,
82
90
(
2015
).
43.
Polymeric Dispersions: Principles and Applications
, edited by
J. M.
Asua
(
Springer Science+Business Media
,
Dordrecht
,
1996
).
44.
F. E.
Critchfield
,
J. A.
Gibson
, Jr.
, and
J. L.
Hall
, “
Dielectric constant and refractive index from 20 to 35° and density at 25° for the system tetrahydrofuran—Water
,”
J. Am. Chem. Soc.
75
,
6044
6045
(
1953
).
45.
A. F.
Leontowich
,
A.
Gomez
,
B.
Diaz Moreno
,
D.
Muir
,
D.
Spasyuk
,
G.
King
,
J. W.
Reid
,
C. Y.
Kim
, and
S.
Kycia
, “
The lower energy diffraction and scattering side-bounce beamline for materials science at the Canadian Light Source
,”
J. Synchrotron Radiat.
28
,
961
(
2021
).
46.
R. B.
Von Dreele
, “
Small-angle scattering data analysis in GSAS-II
,”
J. Appl. Crystallogr.
47
,
1784
1789
(
2014
).
47.
B. H.
Toby
and
R. B.
Von Dreele
, “
GSAS-II: The genesis of a modern open-source all purpose crystallography software package
,”
J. Appl. Crystallogr.
46
,
544
549
(
2013
).
48.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least squares
,”
Q. Appl. Math.
2
,
164
168
(
1944
).
49.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
50.
M.
Teubner
and
R.
Strey
, “
Origin of the scattering peak in microemulsions
,”
J. Chem. Phys.
87
,
3195
3200
(
1987
).
51.
L.
Earnden
,
T.
Laredo
,
A. G.
Marangoni
,
S.
Mirzaee Ghazani
, and
E.
Pensini
, “
Modulation of the viscosity of guar-based fracking fluids using salts
,”
Energy Fuels
35
,
16007
16019
(
2021
).
52.
A.
Lenz
and
L.
Ojamäe
, “
Theoretical IR spectra for water clusters (H2O) n (n = 6–22, 28, 30) and identification of spectral contributions from different H-bond conformations in gaseous and liquid water
,”
J. Phys. Chem. A
110
,
13388
13393
(
2006
).
53.
A. L.
Fameau
,
B.
Houinsou-Houssou
,
B.
Novales
,
L.
Navailles
,
F.
Nallet
, and
J. P.
Douliez
, “
12-Hydroxystearic acid lipid tubes under various experimental conditions
,”
J. Colloid Interface Sci.
341
,
38
47
(
2010
).
54.
D. D.
Purkayastha
and
V.
Madhurima
, “
Interactions in water–THF binary mixture by contact angle, FTIR and dielectric studies
,”
J. Mol. Liq.
187
,
54
57
(
2013
).
55.
P. D.
Ghuge
,
N. A.
Mali
, and
S. S.
Joshi
, “
Comparative analysis of extractive and pressure swing distillation for separation of THF-water separation
,”
Comput. Chem. Eng.
103
,
188
200
(
2017
).
56.
P. D.
Chapman
,
X.
Tan
,
A. G.
Livingston
,
K.
Li
, and
T.
Oliveira
, “
Dehydration of tetrahydrofuran by pervaporation using a composite membrane
,”
J. Membr. Sci.
268
,
13
19
(
2006
).
57.
A.
Yang
,
Y.
Su
,
L.
Teng
,
S.
Jin
,
T.
Zhou
, and
W.
Shen
, “
Investigation of energy-efficient and sustainable reactive/pressure-swing distillation processes to recover tetrahydrofuran and ethanol from the industrial effluent
,”
Sep. Purif. Technol.
250
,
117210
(
2020
).
58.
Y.
Yao
,
Z.
Lv
,
H.
Min
,
Z.
Lv
, and
H.
Jiao
, “
Isolation, identification and characterization of a novel Rhodococcus sp. strain in biodegradation of tetrahydrofuran and its medium optimization using sequential statistics-based experimental designs
,”
Bioresour. Technol.
100
,
2762
2769
(
2009
).
59.
K.
Wu
,
S.
Feng
,
A.
Hedoux
, and
E.
Shalaev
, “
Water structure in glycerol: Spectroscopic and computer simulation investigation of hydrogen bonding and water clustering
,”
J. Mol. Liq.
355
,
118916
(
2022
).
60.
J.
Kaminský
,
F.
Horáčková
,
N.
Biačková
,
T.
Hubáčková
,
O.
Socha
, and
J.
Kubelka
, “
Double hydrogen bonding dimerization propensity of aqueous hydroxy acids investigated using vibrational optical activity
,”
J. Phys. Chem. B
125
,
11350
11363
(
2021
).
61.
B. A.
Wellen
,
E. A.
Lach
, and
H. C.
Allen
, “
Surface pKa of octanoic, nonanoic, and decanoic fatty acids at the air–water interface: Applications to atmospheric aerosol chemistry
,”
Phys. Chem. Chem. Phys.
19
,
26551
26558
(
2017
).
62.
P.
Beaud
,
A.
Caviezel
,
S. O.
Mariager
,
L.
Rettig
,
G.
Ingold
,
C.
Dornes
,
S. W.
Huang
,
J. A.
Johnson
,
M.
Radovic
,
T.
Huber
, and
T.
Kubacka
, “
A time-dependent order parameter for ultrafast photoinduced phase transitions
,”
Nat. Mater.
13
,
923
927
(
2014
).
63.
J. P.
King
,
C. S.
Butler
,
S. W.
Prescott
,
A. V.
Sokolova
,
L.
de Campo
,
A. P.
Williams
, and
R. F.
Tabor
, “
Exploring shear alignment of concentrated wormlike micelles using rheology coupled with small-angle neutron scattering
,”
Phys. Fluids
34
,
083104
(
2022
).
64.
R.
Gordon
,
S. T.
Stober
, and
C. F.
Abrams
, “
Aggregation of 12-hydroxystearic acid and its lithium salt in hexane: Molecular dynamics simulations
,”
J. Phys. Chem. B
120
,
7164
7173
(
2016
).
65.
H. E.
Ries
, Jr
and
D. C.
Walker
, “
Films of mixed horizontally and vertically oriented compounds
,”
J. Colloid Sci.
16
,
361
374
(
1961
).
66.
J. T.
Davies
, “
Catalysis and reaction kinetics at liquid interfaces
,”
Adv. Catal.
6
,
1
65
(
1954
).
67.
H.
Takeno
,
M.
Yanagita
,
Y.
Motegi
, and
K.
Shingo
, “
Relationship between helical aggregates and polymorphs in a 12-hydroxystearic acid gel: Their thermal stability and formation kinetics
,”
Colloid Polym. Sci.
293
,
199
207
(
2015
).
68.
L. F.
Lindoy
and
D. S.
Baldwin
, “
Ligand design for selective metal-ion transport through liquid membranes
,”
Pure Appl. Chem.
61
,
909
914
(
1989
).
69.
Y.
Yoshida
,
H.
Yoshinaga
,
N.
Ichieda
,
A.
Uehara
,
M.
Kasuno
,
K.
Banu
,
K.
Maeda
, and
S.
Kihara
, “
Ion transfer reactions across the aqueous|organic solution interface in the presence of phospholipid layer adsorbed on the interface
,” in
IUPAC International Congress on Analytical Sciences, the Japan Society for Analytical Chemistry
(
IUPAC
,
2001
), pp.
i1037
i1039
.
70.
K.
Wojciechowski
,
M.
Kucharek
, and
J.
Buffle
, “
Mechanism of Cu(II) Transport through permeation liquid membranes using azacrown ether and fatty acid as carrier
,”
J. Membr. Sci.
314
,
152
162
(
2008
).
71.
S. A.
Semenov
,
D. V.
Drobot
,
V. Y.
Musatova
,
A. S.
Pronin
,
A. D.
Pomogailo
, and
G. I.
Dzhardimalieva
, “
Effect of intramolecular hydrogen bond in unsaturated dicarboxylic acid molecules on the formation of cobalt(II) and nickel(II) carboxylates
,”
Russ. J. Inorg. Chem.
61
,
59
62
(
2016
).
72.
R. M.
Smith
and
A. E.
Martell
, “
Critical stability constants, enthalpies and entropies for the formation of metal complexes of aminopolycarboxylic acids and carboxylic acids
,”
Sci. Total Environ.
64
,
125
147
(
1987
).

Supplementary Material

You do not currently have access to this content.