In this paper, we present a numerical approach to solve the Navier–Stokes equations for arbitrary vessel geometries by combining a Fourier-spectral method with a direct-forcing immersed boundary method, which one allows to consider solid–fluid interactions. The approach is applied to a paradigmatic setup motivated by the precession dynamo experiment currently under construction at Helmholtz–Zentrum Dresden–Rossendorf. The experiment consists of a fluid-filled cylinder rotating about two axes, which induces a precession-driven flow inside the cavity. The cylinder is also equipped with baffles at the end caps with adjustable penetration depth to impact the flow. The numerical details and simulation results for the spin-up and precession-driven flow in a circular cylinder with additional baffles are presented. The results provide a first confirmation that the use of such baffles in the precession dynamo experiment is a useful way of influencing the flow, allowing more efficient driving without changing the known flow structure too much.

1.
P.
Meunier
, “
Geoinspired soft mixers
,”
J. Fluids Mech.
903
,
A15
(
2020
).
2.
H.
Poincaré
, “
Sur la précession des corps déformables
,”
Bull. Astron. I
27
,
321
356
(
1910
).
3.
R. R.
Kerswell
, “
The instability of precessing flow
,”
Geophys. Astrophys. Fluid Dyn.
72
,
107
144
(
1993
).
4.
R. R.
Kerswell
, “
Secondary instabilities in rapidly rotating fluids: Inertial wave breakdown
,”
J. Fluid Mech.
382
,
283
306
(
1999
).
5.
S.
Goto
,
A.
Matsunaga
,
M.
Fujiwara
,
M.
Nishioka
,
S.
Kida
,
M.
Yamato
, and
S.
Tsuda
, “
Turbulence driven by precession in spherical and slightly elongated spheroidal cavities
,”
Phys. Fluids
26
,
055107
(
2014
).
6.
Y.
Lin
,
P.
Marti
, and
J.
Noir
, “
Shear-driven parametric instability in a precessing sphere
,”
Phys. Fluids
27
,
046601
(
2015
).
7.
J.
Noir
,
P.
Cardin
,
D.
Jault
, and
J.-P.
Masson
, “
Experimental evidence of non-linear resonance effects between retrograde precession and the tilt-over mode within a spheroid
,”
Geophys. J. Int.
154
,
407
416
(
2003
).
8.
R.
Hollerbach
and
R. R.
Kerswell
, “
Oscillatory internal shear layers in rotating and precessing flows
,”
J. Fluid Mech.
298
,
327
339
(
1995
).
9.
S.
Lorenzani
and
A.
Tilgner
, “
Fluid instabilities in precessing spheroidal cavities
,”
J. Fluid Mech.
447
,
111
128
(
2001
).
10.
F. H.
Busse
, “
Steady fluid flow in a precessing spheroidal shell
,”
J. Fluid Mech.
33
,
739
751
(
1968
).
11.
W. V. R.
Malkus
, “
Precession of the earth as the cause of geomagnetism
,”
Science
160
,
259
264
(
1968
).
12.
J. P.
Vanyo
, “
A geodynamo powered by luni-solar precession
,”
Geophys. Astrophys. Fluid Dyn.
59
,
209
234
(
1991
).
13.
A.
Tilgner
, “
Precession driven dynamos
,”
Phys. Fluids
17
,
034104
(
2005
).
14.
C. A.
Dwyer
,
D. J.
Stevenson
, and
F.
Nimmo
, “
A long-lived lunar dynamo driven by continuous mechanical stirring
,”
Nature
479
,
212
214
(
2011
).
15.
J.
Noir
and
D.
Cébron
, “
Precession-driven flows in non-axisymmetric ellipsoids
,”
J. Fluids Mech.
737
,
412
439
(
2013
).
16.
B. P.
Weiss
and
S. M.
Tikoo
, “
The lunar dynamo
,”
Science
346
,
1198
(
2014
).
17.
C.-C.
Wu
and
P.
Roberts
, “
On a dynamo driven by topographic precession
,”
Geophys. Astrophys. Fluid Dyn.
103
,
467
501
(
2009
).
18.
C.
Nore
,
J.
Léorat
,
J.-L.
Guermond
, and
F.
Luddens
, “
Nonlinear dynamo action in a precessing cylindrical container
,”
Phys. Rev. E
84
,
016317
(
2011
).
19.
O.
Goepfert
and
A.
Tilgner
, “
Dynamos in precessing cubes
,”
New J. Phys.
18
,
103019
(
2016
).
20.
Y.
Lin
,
P.
Marti
,
J.
Noir
, and
A.
Jackson
, “
Precession-driven dynamos in a full sphere and the role of large scale cyclonic vortices
,”
Phys. Fluids
28
,
066601
(
2016
).
21.
D.
Cébron
,
R.
Laguerre
,
J.
Noir
, and
N.
Schaeffer
, “
Precessing spherical shells: Flows, dissipation, dynamo and the lunar core
,”
Geophys. J. Int.
219
,
S34
S57
(
2019
).
22.
F.
Stefani
,
S.
Eckert
,
G.
Gerbeth
,
A.
Giesecke
,
T.
Gundrum
,
C.
Steglich
,
T.
Weier
, and
B.
Wustmann
, “
DRESDYN—A new facility for MHD experiments with liquid sodium
,”
Magnetohydrodynamics
48
,
103
114
(
2012
).
23.
F.
Stefani
,
T.
Albrecht
,
G.
Gerbeth
,
A.
Giesecke
,
T.
Gundrum
,
J.
Herault
,
C.
Nore
, and
C.
Steglich
, “
Towards a precession driven dynamo experiment
,”
Magnetohydrodynamics
51
,
275
284
(
2015
).
24.
R. F.
Gans
, “
On the precession of a resonant cylinder
,”
J. Fluid Mech.
41
,
865
872
(
1970
).
25.
R. F.
Gans
, “
On hydromagnetic precession in a cylinder
,”
J. Fluid Mech.
45
,
111
130
(
1971
).
26.
A.
Giesecke
,
T.
Vogt
,
T.
Gundrum
, and
F.
Stefani
, “
Nonlinear large scale flow in a precessing cylinder and its ability to drive dynamo action
,”
Phys. Rev. Lett.
120
,
024502
(
2018
).
27.
A.
Giesecke
,
T.
Vogt
,
T.
Gundrum
, and
F.
Stefani
, “
Kinematic dynamo action of a precession-driven flow based on the results of water experiments and hydrodynamic simulations
,”
Geophys. Astrophys. Fluid Dyn.
113
,
235
255
(
2019
).
28.
J.
Herault
,
T.
Gundrum
,
A.
Giesecke
, and
F.
Stefani
, “
Subcritical transition to turbulence of a precessing flow in a cylindrical vessel
,”
Phys. Fluids
27
,
124102
(
2015
).
29.
J.
Léorat
,
P.
Lallemand
,
J.
Guermond
, and
F.
Plunian
, “
Dynamo action, between numerical experiments and liquid sodium devices
,” in
Dynamo and Dynamics, a Mathematical Challenge
, edited by
P.
Chossat
,
D.
Ambruster
, and
I.
Oprea
(
Springer
,
Dordrecht, The Netherlands
,
2001
), Vol.
26
, pp.
25
33
.
30.
J.
Léorat
, “
Large scales features of a flow driven by precession
,”
Magnetohydrodynamics
42
,
143
151
(
2006
).
31.
J. M.
Lopez
and
F.
Marques
, “
Nonlinear and detuning effects of the nutation angle in precessionally forced rotating cylinder flow
,”
Phys. Rev. Fluids
1
,
023602
(
2016
).
32.
T.
Albrecht
,
H. M.
Blackburn
,
J. M.
Lopez
,
R.
Manasseh
, and
P.
Meunier
, “
On triadic resonance as an instability mechanism in precessing cylinder flow
,”
J. Fluid Mech.
841
,
R3
(
2018
).
33.
J. P.
Vanyo
and
P. W.
Likins
, “
Use of baffles to suppress energy dissipation in liquid-filled precessing cavities
,”
J. Spacecr. Rockets
10
,
627
(
1973
).
34.
D. S.
Zimmerman
,
S. A.
Triana
,
H.-C.
Nataf
, and
D. P.
Lathrop
, “
A turbulent, high magnetic Reynolds number experimental model of Earth's core
,”
J. Geophys. Res. (Solid Earth)
119
,
4538
4557
, (
2014
).
35.
K.
Finke
and
A.
Tilgner
, “
Simulations of the kinematic dynamo onset of spherical Couette flows with smooth and rough boundaries
,”
Phys. Rev. E
86
,
016310
(
2012
).
36.
R.
Monchaux
,
M.
Berhanu
,
M.
Bourgoin
,
M.
Moulin
,
P.
Odier
,
J.-F.
Pinton
,
R.
Volk
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
C.
Gasquet
,
L.
Marié
, and
F.
Ravelet
, “
Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium
,”
Phys. Rev. Lett.
98
,
044502
(
2007
).
37.
S.
Miralles
,
N.
Bonnefoy
,
M.
Bourgoin
,
P.
Odier
,
J.-F.
Pinton
,
N.
Plihon
,
G.
Verhille
,
J.
Boisson
,
F.
Daviaud
, and
B.
Dubrulle
, “
Dynamo threshold detection in the von Kármán sodium experiment
,”
Phys. Rev. E
88
,
013002
(
2013
).
38.
A.
Giesecke
,
C.
Nore
,
F.
Stefani
,
G.
Gerbeth
,
J.
Léorat
,
W.
Herreman
,
F.
Luddens
, and
J.-L.
Guermond
, “
Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment
,”
New J. Phys.
14
,
053005
(
2012
).
39.
C.
Nore
,
J.
Léorat
,
J.-L.
Guermond
, and
A.
Giesecke
, “
Mean-field model of the von Kármán sodium dynamo experiment using soft iron impellers
,”
Phys. Rev. E
91
,
013008
(
2015
).
40.
S.
Kreuzahler
,
D.
Schulz
,
H.
Homann
,
Y.
Ponty
, and
R.
Grauer
, “
Numerical study of impeller-driven von Kármán flows via a volume penalization method
,”
New J. Phys.
16
,
103001
(
2014
).
41.
S.
Kreuzahler
,
Y.
Ponty
,
N.
Plihon
,
H.
Homann
, and
R.
Grauer
, “
Dynamo enhancement and mode selection triggered by high magnetic permeability
,”
Phys. Rev. Lett.
119
,
234501
(
2017
).
42.
C.
Nore
,
D.
Castanon Quiroz
,
L.
Cappanera
, and
J.-L.
Guermond
, “
Direct numerical simulation of the axial dipolar dynamo in the Von Kármán sodium experiment
,”
Europhys. Lett.
114
,
65002
(
2016
).
43.
F.
Pizzi
,
A.
Giesecke
, and
F.
Stefani
, “
Ekman boundary layers in a fluid filled precessing cylinder
,”
AIP Adv.
11
,
035023
(
2021
).
44.
F.
Pizzi
,
A.
Giesecke
,
J.
Šimkanin
, and
F.
Stefani
, “
Prograde and retrograde precession of a fluid-filled cylinder
,”
New J. Phys.
23
,
123016
(
2021
).
45.
J. W.
Cooley
and
J. W.
Tukey
, “
An algorithm for the machine calculation of complex Fourier series
,”
Math. Comput.
19
,
297
301
(
1965
).
46.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods: Fundamentals in Single Domains
(
Springer Science and Business Media
,
2007
).
47.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Courier Corporation
,
2001
).
48.
G.
Patterson
, Jr.
and
S. A.
Orszag
, “
Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions
,”
Phys. Fluids
14
,
2538
2541
(
1971
).
49.
C.-W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
,
439
471
(
1988
).
50.
S.
Gottlieb
,
C.-W.
Shu
, and
E.
Tadmor
, “
Strong stability-preserving high-order time discretization methods
,”
SIAM Rev.
43
,
89
112
(
2001
).
51.
A. J.
Chorin
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
762
(
1968
).
52.
R.
Temam
, “
Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II
,”
Arch. Ration. Mech. Anal.
33
,
377
385
(
1969
).
53.
R.
Temam
,
Navier-Stokes Equations: Theory Numerical Analysis
(
American Mathematical Soc.
,
2001
), Vol.
343
.
54.
C. S.
Peskin
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
252
(
1977
).
55.
W.-X.
Huang
and
F.-B.
Tian
, “
Recent trends and progress in the immersed boundary method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
233
,
7617
7636
(
2019
).
56.
D.
Goldstein
,
R.
Handler
, and
L.
Sirovich
, “
Modeling a no-slip flow boundary with an external force field
,”
J. Comput. Phys.
105
,
354
366
(
1993
).
57.
D.
Goldstein
,
R.
Handler
, and
L.
Sirovich
, “
Direct numerical simulation of turbulent flow over a modeled riblet covered surface
,”
J. Fluid Mech.
302
,
333
376
(
1995
).
58.
E.
Saiki
and
S.
Biringen
, “
Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method
,”
J. Comput. Phys.
123
,
450
465
(
1996
).
59.
M.-C.
Lai
and
C. S.
Peskin
, “
An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
,”
J. Comput. Phys.
160
,
705
719
(
2000
).
60.
G.
Iaccarino
and
R.
Verzicco
, “
Immersed boundary technique for turbulent flow simulations
,”
Appl. Mech. Rev.
56
,
331
347
(
2003
).
61.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
62.
E.
Arquis
,
J.
Caltagirone
 et al, “
Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide-milieu poreux: Applicationa la convection naturelle
,”
C.R. Acad. Sci. Paris II
299
,
1
4
(
1984
).
63.
G. H.
Keetels
,
H.
Clercx
, and
G.
van Heijst
, “
Fourier spectral solver for the incompressible Navier-Stokes equations with volume-penalization
,” in
Proceedings of the International Conference on Computational Science
(
Springer
,
2007
), pp.
898
905
.
64.
C.
Jause-Labert
,
F. S.
Godeferd
, and
B.
Favier
, “
Numerical validation of the volume penalization method in three-dimensional pseudo-spectral simulations
,”
Comput. Fluids
67
,
41
56
(
2012
).
65.
E.
Fadlun
,
R.
Verzicco
,
P.
Orlandi
, and
J.
Mohd-Yusof
, “
Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations
,”
J. Comput. Phys.
161
,
35
60
(
2000
).
66.
A.
Cristallo
and
R.
Verzicco
, “
Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows
,”
Flow Turbul. Combust.
77
,
3
26
(
2006
).
67.
T.
Engels
,
D.
Kolomenskiy
,
K.
Schneider
,
F.-O.
Lehmann
, and
J.
Sesterhenn
, “
Bumblebee flight in heavy turbulence
,”
Phys. Rev. Lett.
116
,
028103
(
2016
).
68.
J. A.
Morales
,
W. J.
Bos
,
K.
Schneider
, and
D. C.
Montgomery
, “
Magnetohydrodynamically generated toroidal and poloidal velocities in confined plasma
,”
APS Div. Plasma Phys. Meet. Abstr.
2013
,
TO5–003
.
69.
J. A.
Morales
,
M.
Leroy
,
W. J.
Bos
, and
K.
Schneider
, “
Simulation of confined magnetohydrodynamic flows with Dirichlet boundary conditions using a pseudo-spectral method with volume penalization
,”
J. Comput. Phys.
274
,
64
94
(
2014
).
70.
K.
Schneider
, “
Immersed boundary methods for numerical simulation of confined fluid and plasma turbulence in complex geometries: A review
,”
J. Plasma Phys.
81
,
435810601
(
2015
).
71.
J.
Mohd-Yusof
, “
Combined immersed boundary/b-spline method for simulations of flows in complex geometries
,” in
CTR Annual Research Briefs
(
NASA AMES/Stanford University
,
1997
).
72.
R.
Verzicco
,
J.
Mohd-Yusof
,
P.
Orlandi
, and
D.
Haworth
, “
LES in complex geometries using boundary body forces
,” in
Proceedings of the Summer Program
(
Center for Turbulence Research Stanford
,
CA
,
1998
), pp.
171
186
.
73.
E.
Balaras
, “
Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations
,”
Comput. Fluids
33
,
375
404
(
2004
).
74.
A.
Gilmanov
,
F.
Sotiropoulos
, and
E.
Balaras
, “
A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids
,”
J. Comput. Phys.
191
,
660
669
(
2003
).
75.
A.
Gilmanov
and
F.
Sotiropoulos
, “
A hybrid Cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies
,”
J. Comput. Phys.
207
,
457
492
(
2005
).
76.
L.
Ge
and
F.
Sotiropoulos
, “
A numerical method for solving the 3d unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries
,”
J. Comput. Phys.
225
,
1782
1809
(
2007
).
77.
I.
Borazjani
,
L.
Ge
, and
F.
Sotiropoulos
, “
Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3d rigid bodies
,”
J. Comput. Phys.
227
,
7587
7620
(
2008
).
78.
Y. v. H.
Juergen Riegel
and
W.
Mayer
, “
Freecad
” (
2022
).
79.
C.
Geuzaine
and
J.-F.
Remacle
, “
Gmsh
” (
2022
).
80.
A.
Narkhede
and
D.
Manocha
, “
Fast polygon triangulation based on seidel's algorithm
,” in
Graphics Gems V
(
Elsevier
,
1995
), pp.
394
397
.
81.
S.
Woop
,
C.
Benthin
, and
I.
Wald
, “
Watertight ray/triangle intersection
,”
J. Comput. Graph. Tech. (JCGT)
2
(
1
),
65
82
(
2013
), available at http://jcgt.org/published/0002/01/05/.
82.
T.
Ikeno
and
T.
Kajishima
, “
Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations
,”
J. Comput. Phys.
226
,
1485
1508
(
2007
).
83.
T.-L.
Horng
,
P.-W.
Hsieh
,
S.-Y.
Yang
, and
C.-S.
You
, “
A simple direct-forcing immersed boundary projection method with prediction-correction for fluid-solid interaction problems
,”
Comput. Fluids
176
,
135
152
(
2018
).
84.
R.
Rannacher
, “
On Chorin's projection method for the incompressible Navier-Stokes equations
,” in
The Navier-Stokes Equations II—Theory and Numerical Method
(Springer, 1992), pp.
167
183.
85.
J.-L.
Guermond
,
P.
Minev
, and
J.
Shen
, “
An overview of projection methods for incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
195
,
6011
6045
(
2006
).
86.
J.
Van Kan
, “
A second-order accurate pressure-correction scheme for viscous incompressible flow
,”
SIAM J. Sci. Stat. Comput.
7
,
870
891
(
1986
).
87.
K.
Goda
, “
A multistep technique with implicit difference schemes for calculating two-or three-dimensional cavity flows
,”
J. Comput. Phys.
30
,
76
95
(
1979
).
88.
L. J.
Timmermans
,
P. D.
Minev
, and
F. N.
Van De Vosse
, “
An approximate projection scheme for incompressible flow using spectral elements
,”
Int. J. Numer. Methods Fluids
22
,
673
688
(
1996
).
89.
J.
Guermond
and
J.
Shen
, “
On the error estimates for the rotational pressure-correction projection methods
,”
Math. Comput.
73
,
1719
1737
(
2004
).
90.
D.
Pekurovsky
, “
P3dfft: A framework for parallel computations of Fourier transforms in three dimensions
,”
SIAM J. Sci. Comput.
34
,
C192
C209
(
2012
).
91.
N.
Li
and
S.
Laizet
, “
2decomp and FFT—A highly scalable 2d decomposition library and FFT interface
,” in
Proceedings of the Cray User Group 2010 Conference
(
2010
), pp.
1
13
.
92.
M.
Pippig
, “
PFFT: An extension of FFTW to massively parallel architectures
,”
SIAM J. Sci. Comput.
35
,
C213
C236
(
2013
).
93.
K. G.
Larkin
,
M. A.
Oldfield
, and
H.
Klemm
, “
Fast Fourier method for the accurate rotation of sampled images
,”
Opt. Commun.
139
,
99
106
(
1997
).
94.
L.
Dalcin
,
M.
Mortensen
, and
D. E.
Keyes
, “
Fast parallel multidimensional FFT using advanced MPI
,”
J. Parallel Distrib. Comput.
128
,
137
150
(
2019
).
95.
Message Passing Interface Forum, MPI: A Message-Passing Interface Standard Version 4.0,
2021
.
96.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
231
(
2005
).
97.
D.
Krause
, “
Juwels: Modular tier-0/1 supercomputer at the jülich supercomputing centre
,”
J. Large-Scale Res. Facil.
5
,
A135
A135
(
2019
).
98.
E.
Benton
and
A.
Clark
, Jr.
, “
Spin-up
,”
Annu. Rev. Fluid Mech.
6
,
257
280
(
1974
).
99.
P.
Duck
and
M.
Foster
, “
Spin-up of homogeneous and stratified fluids
,”
Annu. Rev. Fluid Mech.
33
,
231
263
(
2001
).
100.
J. S.
Park
and
J. M.
Hyun
, “
Review on open-problems of spin-up flow of an incompressible fluid
,”
J. Mech. Sci. Technol.
22
,
780
787
(
2008
).
101.
H.
Greenspan
and
L.
Howard
, “
On a time-dependent motion of a rotating fluid
,”
J. Fluid Mech.
17
,
385
404
(
1963
).
102.
H. P.
Greenspan
,
The Theory of Rotating Fluids
,
Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press
,
1968
).
103.
E.
Wedemeyer
, “
The unsteady flow within a spinning cylinder
,”
J. Fluid Mech.
20
,
383
399
(
1964
).
104.
G.
Venezian
, “
Spin-up of a contained fluid
,” California Institute of Technology, Division of Engineering and Applied Science Report No. 97-17, Pasadena, CA,
1969
.
105.
A.
Giesecke
,
T.
Albrecht
,
T.
Gundrum
,
J.
Herault
, and
F.
Stefani
, “
Triadic resonances in nonlinear simulations of a fluid flow in a precessing cylinder
,”
New J. Phys.
17
,
113044
(
2015
).
106.
F.
Burmann
and
J.
Noir
, “
Effects of bottom topography on the spin-up in a cylinder
,”
Phys. Fluids
30
,
106601
(
2018
).
You do not currently have access to this content.