An experimental investigation was conducted to control separation characteristics of a 24° compression corner induced interaction in a Mach 2.0 flow using an array of mechanical vortex generators (VGs) with rectangular vanes (RRV) placed 6.8δ upstream of the interaction. The objective was to study the effect of (i) inter-VG spacing (s/h =12, 9.5, 8.0, 6.1, 5.7, 5.5, 4.9, and 4.7), (ii) vane chord length (c/h =7.2, 4.2, and 3.0), and (iii) vane angle (α = 24°, 20°, 18°, and 16°) in controlling the interaction and on the surface flow topology. These modifications reduce the projected area of VGs in the array from the conventional VG design of RRV2 (c/h =7.2 and s/h =9.5) to RRV8 (c/h =3.0 and s/h =4.7) by 41%. Reducing s/h also reduces the inter-VG region of the separation significantly that helps to achieve maximum reduction in the streamwise extent of separation up to 83% and in the peak rms value up to 80%. The former improves the overall pressure recovery from 3.0 to 3.4, thereby moving closer toward the inviscid value of 3.8. Surface flow topology shows that the VG array splits a single large spanwise separation bubble for no control into multiple smaller scale individual separation cells placed side-by-side all along the span of the interaction. This helps to reduce the magnitude of mass exchange imbalance across each individual separation cell and, hence, stabilizes the overall interaction relative to no control. The best VG configuration of RRV8 shifts the dominant frequency of fluctuations to approximately 2 kHz or St = 0.19, which is nearly an order of magnitude higher than that for no control.

1.
A.
Henckels
,
A. F.
Kreins
, and
F.
Maurer
, “
Experimental investigations of hypersonic shock-boundary layer interaction
,”
ZFW
17
(
2
),
116
124
(
1993
), available at https://elib.dlr.de/24431/.
2.
R. D.
Stockbridge
, “
Experimental investigation of shock wave/boundary-layer interaction in an annular duct
,” AIAA Paper No. 88-0272,
1988
.
3.
C.
Hirschen
,
D.
Herrmann
, and
A.
Gülhan
, “
Experimental investigations of the performance and unsteady behavior of a supersonic intake
,”
J. Propul. Power
23
(
3
),
566
(
2007
).
4.
B. F.
Carrol
and
J. C.
Dutton
, “
Characteristics of multiple shock wave/turbulent boundary layer interaction in rectangular ducts
,” AIAA Paper No. 88-3805,
1989
.
5.
J.
Seddon
and
E. L.
Goldsmith
,
Practical Intake Aerodynamic Design
, AIAA Education Series (
AIAA
,
Washington, DC
,
1993
).
6.
D.
Hermann
,
S.
Blem
, and
A.
Gulhan
, “
Experimental study of boundary-layer bleed impact on ramjet inlet performance
,”
J. Propul. Power
27
(
6
),
1186
1195
(
2011
).
7.
M. K.
Fukuda
,
W. R.
Hingst
, and
E.
Reshotko
, “
Bleed effects on shock-boundary-layer interactions in supersonic mixed compression inlets
,”
J. Aircr.
14
(
2
),
151
156
(
1977
).
8.
D. H.
Crawford
, “
The effect of air bleed on heat transfer and pressure distribution on 30° flares at a Mach number of 6–8
,”
Report No. NASA TMX-439
,
1961
.
9.
K. O. W.
Ball
and
R. H.
Korkegi
, “
An investigation of the effect of suction on hypersonic laminar boundary-layer separation
,”
AIAA J.
6
(
2
),
239
243
(
1968
).
10.
T. O.
Hahn
,
T. I.-P.
Shih
, and
W. J.
Chyu
, “
Numerical study of shock-wave/boundary interactions with bleed
,”
AIAA J.
31
(
5
),
869
876
(
1993
).
11.
G. J.
Harloff
and
G. E.
Smith
, “
Supersonic-inlet boundary-layer bleed flow
,”
AIAA J.
34
(
4
),
778
785
(
1996
).
12.
R. H. M.
Giepman
,
F. F. J.
Schrijer
, and
B. W.
van Oudheusden
, “
Flow control of an oblique shock wave reflection with micro-ramp vortex generators: effects of location and size
,”
Phys. Fluids
26
(
6
),
066101
(
2014
).
13.
M.
Rybalko
,
E.
Loth
,
R. V.
Chima
,
S. M.
Hirt
, and
J. R.
DeBonis
, “
Micro-ramps for external compression low-boom inlets
,” AIAA Paper No. 2009-4206,
2009
.
14.
H.
Babinsky
,
N. J.
Makinson
, and
C. E.
Morgan
, “
Micro-vortex generator flow control for supersonic engine inlets
,” AIAA Paper No. 2007-521,
2007
.
15.
B. H.
Anderson
,
J.
Tinapple
, and
L.
Surber
, “
Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation
,” AIAA Paper No. 2006-3197,
2006
.
16.
R. J.
Pegg
,
J. L.
Hunt
,
D. H.
Petley
,
L.
Burkardt
,
D. R.
Stevens
,
P. L.
Moses
,
S. Z.
Pinckney
,
Z. K.
Kabis
,
K. A.
Spoth
,
W. M.
Dziedzic
 et al., “
Design of a hypersonic waverider-derived airplane
,” AIAA Paper No. 1993-0401,
1993
.
17.
F. K.
Lu
,
Q.
Li
, and
C.
Liu
, “
Microvortex generators in high-speed flow
,”
Prog. Aerosp. Sci.
53
,
30
45
(
2012
).
18.
A. G.
Panaras
and
F. K.
Lu
, “
Micro-vortex generators for shock wave/boundary layer interactions
,”
Prog. Aerosp. Sci.
74
,
16
47
(
2015
).
19.
S. B.
Verma
and
H.
Abdellah
, “
Editorial on the thematic issue: Supersonic flow control
,”
Shock Waves
25
(
5
),
443
449
(
2015
).
20.
V.
Narayanaswamy
,
L. L.
Raja
, and
N. T.
Clemens
, “
Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator
,”
Phys. Fluids
24
(
7
),
076101
(
2012
).
21.
B. R.
Greene
,
N. T.
Clemens
,
P.
Magari
, and
D.
Micka
, “
Control of mean separation in shock boundary layer interaction using pulsed plasma jets
,”
Shock Waves
25
(
5
),
495
505
(
2015
).
22.
M. X.
Tang
,
Y.
Wu
,
H. H.
Zong
,
Y. H.
Luo
,
H. S.
Yang
, and
S. G.
Guo
, “
Experimental investigation of supersonic boundary-layer tripping with a spanwise pulsed spark discharge array
,”
J. Fluid Mech.
931
,
A16
(
2022
).
23.
R.
Szwaba
and
P.
Doerffer
, “
Shock wave–boundary layer interaction control by streamwise vortices
,” in
Mechanics of the 21st Century, Proceedings of the 21st ICTAM
, edited by
W.
Gutkowski
and
T. A.
Kowaleski
(
Springer
,
Dordrecht, The Netherlands
,
2005
).
24.
L. J.
Souverein
and
J.-F.
Debiève
, “
Effect of air jet vortex generators on a shock wave boundary layer interaction
,”
Exp. Fluids
49
(
5
),
1053
1064
(
2010
).
25.
R.
Szwaba
, “
Influence of air-jet vortex generator diameter on separation region
,”
J. Therm. Sci.
22
(
4
),
294
303
(
2013
).
26.
R.
Bur
,
D.
Coponet
, and
Y.
Carpels
, “
Separation control by vortex generator devices in a transonic channel flow
,”
Shock Waves
19
(
6
),
521
530
(
2009
).
27.
S. B.
Verma
and
C.
Manisankar
, “
Shock-wave boundary-layer interaction control on a compression ramp using steady micro air-jets
,”
AIAA J.
50
(
12
),
2753
2764
(
2012
).
28.
A.
Uzun
,
J. T.
Solomon
,
C. H.
Foster
,
W. S.
Oates
,
M. Y.
Hussaini
, and
F. S.
Alvi
, “
Flow physics of a pulsed microjet actuator for high-speed flow control
,”
AIAA J.
51
(
12
),
2894
2918
(
2013
).
29.
B. A.
Reichert
and
B. J.
Wendt
, “
Improving diffusing s-duct performance by secondary flow control
,” AIAA Paper No. 94-0365,
1994
.
30.
D. L.
Hughes
,
J. K.
Holzman
, and
H.
Johnson
, “
Flight-determined characteristics of an air intake system on an F-111A airplane
,”
Report No. NASA TN D-6679
,
1972
.
31.
B.
Wendt
and
W.
Hingst
, “
Flow structures in the wake of a wishbone vortex generator
,”
AIAA J.
32
(
11
),
2234
2240
(
1994
).
32.
P.
Ashill
,
J.
Fulker
, and
K.
Hackett
, “
Research at DERA on sub-boundary layer vortex generators (SBVGs)
,” AIAA Paper No. 2001-0831,
2001
.
33.
S.
Lee
,
E.
Loth
, and
H.
Babinsky
, “
shock boundary layer control with various vortex generator geometries
,”
Comput. Fluids
49
(
1
),
233
246
(
2011
).
34.
S.
Lee
and
E.
Loth
, “
Impact of ramped vanes on normal shock boundary-layer interaction
,”
AIAA J.
50
(
10
),
2069
2079
(
2012
).
35.
S. B.
Verma
and
C.
Manisankar
, “
Control of an incident shock induced boundary layer interaction using vane-type vortex generating devices
,”
AIAA J.
56
(
4
),
1600
1615
(
2018
).
36.
H.
Shim
,
K.
Kwon
, and
S.
Park
, “
Experimental study on the wake characteristics of vane-type vortex generators in a flat plate turbulent boundary layer
,” in
Proceedings of the 12th International Conference on Fluid Mechanics & Aerodynamics (FMA'14)
, edited by
N. E.
Mastorakis
and
J. D.
Yau
(
WSEAS Press
,
Geneva, Switzerland
,
2014
), pp.
41
49
.
37.
C. M.
Velte
,
C.
Braud
,
S.
Coudert
, and
J.-M.
Foucaut
, “
Vortex generator induced flow in a high Re boundary layer
,”
J. Phys.: Conf. Ser.
555
,
012102
(
2014
).
38.
S. B.
Verma
and
C.
Manisankar
, “
Assessment of various low profile mechanical vortex generator configurations in controlling an incident shock-induced separation
,”
AIAA J.
55
(
7
),
2228
2240
(
2017
).
39.
C. C.
Lin
,
Turbulent Flows and Heat Transfer
(
Princeton University Press
,
Princeton, NJ
,
1959
).
40.
E. R.
Van Driest
, “
Turbulent boundary layer in compressible flows
,”
J. Aeronaut. Sci.
18
(
3
),
145
160
(
1951
).
41.
R. M.
O'Donnell
, “
Experimental investigation at a Mach number of 2.41 of average skin-friction coefficients and velocity profiles for laminar and turbulent boundary layers and an assessment of probe effects
,”
Report No. NACA-TN-3122
,
1954
.
42.
M. V.
Lowson
, “
Prediction of boundary layer pressure fluctuations
,” Report No. AFFDL TR-67-167,
1968
.
43.
A. L.
Laganelli
,
A.
Martelluci
, and
L. L.
Shaw
, “
Wall pressure fluctuations in attached boundary layer flow
,”
AIAA J.
21
(
4
),
495
502
(
1983
).
44.
K. C.
Muck
,
J.
Andreopoulos
, and
J. P.
Dussuage
, “
Unsteady nature of shock-wave/turbulent boundary-layer interaction
,”
AIAA J.
26
(
2
),
179
187
(
1988
).
45.
W. J.
Chyu
and
R. D.
Hanly
, “
Power and cross spectra and space-time correlations of surface fluctuating pressures at Mach numbers between 1.6 and 2.5
,”
Report No. NASA TN-D-5440
,
1969
.
46.
K. R.
Raman
, “
A study of surface pressure fluctuations in hypersonic turbulent boundary layers
,”
Report No. NASA CR-2386
,
1974
.
47.
D. S.
Dolling
and
C. T.
Or
, “
Unsteadiness of the shock wave structure in attached and separated compression ramp flows
,”
Exp. Fluids
3
,
24
32
(
1985
).
48.
P. L.
Blinde
,
R. A.
Humble
,
B. W.
van Oudheusden
, and
F.
Scarano
, “
Effects of micro-ramps on a shock wave/turbulent boundary layer interaction
,”
Shock Waves
19
,
507
520
(
2009
).
49.
W.
Merzkirch
,
Flow Visualization
, 2nd ed. (
Academic Press Inc.
,
1987
).
50.
L. C.
Squire
, “
The motion of a thin oil sheet under the steady boundary layer on a body
,”
J. Fluid Mech.
11
(
2
),
161
179
(
2006
).
51.
K. S.
Heffener
,
A.
Chpoun
, and
J. C.
Lengrand
, “
Experimental study of transitional axisymmetric shock-boundary layer interactions at Mach 5
,” AIAA Paper No. 1993-3131,
1993
.
52.
J. J.
Ginoux
, “
Streamwise vortices in reattaching high speed flows: A suggested approach
,”
AIAA J.
9
(
4
),
759
760
(
1971
).
53.
T.
Nilavarasan
,
G. N.
Joshi
, and
A.
Misra
, “
Effect of microramps on flare-induced shock – boundary-layer interaction
,”
Aeronaut. J.
124
(
1271
),
121
149
(
2020
).
54.
C.
Manisankar
,
I.
Singh
,
S.
Narayanan
, and
S. B.
Verma
, “
Off- and on-surface studies on flow development from various vortex generators configurations at Mach 2.0
,”
Phys. Fluids
33
,
096109
(
2021
).
55.
M.
Tobak
and
D. J.
Peake
, “
Topology of three-dimensional separated flows
,” NASA Memorandum No. 81294,
1981
.
56.
M.
Tobak
and
D. J.
Peake
, “
Topology of two-dimensional and three-dimensional separated flows
,” AIAA Paper No. 79-1480,
1979
.
57.
D. J.
Peake
and
M.
Tobak
,
Three-Dimensional Interactions and Vortical Flows With Emphasis on High Speeds
(
AGARD-AG-252
,
1980
).
58.
M. J.
Lighthill
, “
Attachment and separation in three-dimensional flow
,” in
Laminar Boundary Layers
, edited by
L.
Rosenhead
(
Oxford University Press
,
1963
), pp.
72
82
.
59.
D. R.
Chapman
,
D. M.
Kuehn
, and
H. K.
Larson
, “
Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition
,”
Report No. NACA-TN-3869
,
1957
.
60.
J. W.
Barter
and
D. S.
Dolling
, “
Reduction of fluctuating pressure loads in shock/boundary-layer interactions
,”
AIAA J.
33
(
10
),
1842
1849
(
1995
).
61.
B.
Ganapathisubramani
,
N. T.
Clemens
, and
D. S.
Dolling
, “
Effects of upstream boundary layer on the unsteadiness of shock induced separation
,”
J. Fluid Mech.
585
,
369
394
(
2007
).
62.
M.
Grilli
,
P. J.
Schmid
,
S.
Hickel
, and
N. A.
Adams
, “
Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction
,”
J. Fluid Mech.
700
,
16
28
(
2012
).
63.
D. J.
Maull
, “
Hypersonic flow over axially symmetric spiked bodies
,”
J. Fluid Mech.
4
,
584
592
(
1960
).
64.
A. F.
Charwat
,
C. F.
Dewey
, Jr., 
J. N.
Roos
, and
J. A.
Hitz
, “
An investigation of separated flows—Part II: Flow in cavity and heat transfer
,”
J. Aerospace Sci.
28
(
7
),
513
527
(
1961
).
65.
S.
Piponniau
,
J.-P.
Dussauge
,
J.-F. P.
Debiève
, and
P.
Dupont
, “
A simple model for low-frequency unsteadiness in shock-induced separation
,”
J. Fluid Mech.
629
,
87
108
(
2009
).
66.
J.-P.
Dussauge
,
P.
Dupont
, and
J.-F.
Debiève
, “
Unsteadiness in shock wave boundary layer interactions with separation
,”
Aerosp. Sci. Technol.
10
,
85
91
(
2006
).
67.
M. E.
Erengil
and
D. S.
Dolling
, “
Effect of sweepback on unsteady separation in Mach 5 compression ramp interactions
,”
AIAA J.
31
(
2
),
302
311
(
1993
).
68.
S. B.
Verma
and
C.
Manisankar
, “
Vane-type micro vortex generators for optimal control of flow separation and array arrangement thereof, DRDO-CSIR
,” Indian Patent Application No. ERIP/IP/2001080/M/01 (2021).
You do not currently have access to this content.