The starting processes of under-expanded free jets with nozzle pressure ratios of 2.15, 2.7, and 3.4 are systematically analyzed by large-eddy simulations, and the unified laws of the evolution of the screech frequency and the screech mode in the starting jet are given. Through the development of vortices, the critical time points of the generations of screech tones are investigated. The wavenumber spectra and dispersion relations are employed, showing that the screech feedback loops in the different starting jets are all closed by the neutral waves excited by the interaction between the Kelvin–Helmholtz wavepacket and shock cells of different wavenumbers. The screech frequency prediction during the starting process is put forward for the first time, which is achieved by combining the neutral acoustic wave mode with wavenumber differences between shock cells and the Kelvin–Helmholtz wavepacket. Spectral proper orthogonal decomposition is applied to explain the reason for the change in the interaction mechanism during the starting process.

1.
X.
Li
,
W.
Yao
, and
X.
Fan
, “
Large-eddy simulation of time evolution and instability of highly underexpanded sonic jets
,”
AIAA J.
54
,
3191
(
2016
).
2.
P. A.
Kumar
,
S. M. A.
Kumar
,
A. S.
Mitra
, and
E.
Rathakrishnan
, “
Fluidic injectors for supersonic jet control
,”
Phys. Fluids
30
,
126101
(
2018
).
3.
J. J.
Peña Fernández
and
J.
Sesterhenn
, “
Compressible starting jet: Pinch-off and vortex ring–trailing jet interaction
,”
J. Fluid Mech.
817
,
560
(
2017
).
4.
A.
Powell
, “
On the mechanism of choked jet noise
,”
Proc. Phys. Soc., London, Sect. B
66
,
1039
(
1953
).
5.
D.
Edgington-Mitchell
, “
Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets—A review
,”
Int. J. Aeroacoust.
18
,
118
(
2019
).
6.
A.
Powell
,
Y.
Umeda
, and
R.
Ishii
, “
Observations of the oscillation modes of choked circular jets
,”
J. Acoust. Soc. Am.
92
,
2823
(
1992
).
7.
M. M.
Merle
, “
Nouvelles recherches sur les fréquences ultrasonores émises par les jets d'air
,”
Ann. Telecommun.
12
,
424
(
1957
).
8.
G.
Raman
, “
Supersonic jet screech: Half-century from Powell to the present
,”
J. Sound Vib.
225
,
543
(
1999
).
9.
L.
Liu
,
X.
Li
,
N.
Liu
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
The feedback loops of discrete tones in under-expanded impinging jets
,”
Phys. Fluids
33
,
106112
(
2021
).
10.
K.
Taira
,
S. L.
Brunton
,
S.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
Mckeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
(
2017
).
11.
A. V.
Cavalieri
,
D.
Rodríguez
,
P.
Jordan
,
T.
Colonius
, and
Y.
Gervais
, “
Wavepackets in the velocity field of turbulent jets
,”
J. Fluid Mech.
730
,
559
(
2013
).
12.
T.
Manning
and
S.
Lele
, “
Numerical simulations of shock-vortex interactions in supersonic jet screech
,” in
36th AIAA Aerospace Sciences Meeting and Exhibit
,
1998
.
13.
T. A.
Manning
, “
A numerical investigation of sound generation in supersonic jet screech
,” in
6th AIAA Aeroacoustics Conference and Exihibit
,
2000
.
14.
O. T.
Schmidt
,
A.
Towne
,
T.
Colonius
,
A. V. G.
Cavalieri
,
P.
Jordan
, and
G. A.
Brès
, “
Wavepackets and trapped acoustic modes in a turbulent jet: Coherent structure eduction and global stability
,”
J. Fluid Mech.
825
,
1153
(
2017
).
15.
A.
Towne
,
A. V. G.
Cavalieri
,
P.
Jordan
,
T.
Colonius
,
O.
Schmidt
,
V.
Jaunet
, and
G. A.
Brès
, “
Acoustic resonance in the potential core of subsonic jets
,”
J. Fluid Mech.
825
,
1113
(
2017
).
16.
P.
Jordan
,
V.
Jaunet
,
A.
Towne
,
A. V. G.
Cavalieri
,
T.
Colonius
,
O.
Schmidt
, and
A.
Agarwal
, “
Jet–flap interaction tones
,”
J. Fluid Mech.
853
,
333
(
2018
).
17.
S.
Karami
,
P. C.
Stegeman
,
A.
Ooi
,
V.
Theofilis
, and
J.
Soria
, “
Receptivity characteristics of under-expanded supersonic impinging jets
,”
J. Fluid Mech.
889
,
A27
(
2020
).
18.
X.
Li
,
F.
He
,
X.
Zhang
,
P.
Hao
, and
Z.
Yao
, “
Shock motion and flow structure of an underexpanded jet in the helical mode
,”
AIAA J.
57
,
3943
(
2019
).
19.
X.
Li
,
X.
Zhang
,
P.
Hao
, and
F.
He
, “
Acoustic feedback loops for screech tones of underexpanded free round jets at different modes
,”
J. Fluid Mech.
902
,
A17
(
2020
).
20.
C.
Tam
,
J. M.
Seiner
, and
J. C.
Yu
, “
Proposed relationship between broadband shock associated noise and screech tones
,”
J. Sound Vib.
110
,
309
(
1986
).
21.
R.
Westley
and
J.
Woolley
, “
The near field sound pressures of a choked jet when oscillating in the spinning mode
,” in
2nd AIAA Aeroacoustics Conference and Exihibit
,
1975
.
22.
J.
Panda
, “
An experimental investigation of screech noise generation
,”
J. Fluid Mech.
378
,
71
(
1999
).
23.
C. K. W.
Tam
and
H. K.
Tanna
, “
Shock associated noise of supersonic jets from convergent-divergent nozzles
,”
J. Sound Vib.
81
,
337
(
1982
).
24.
D.
Edgington-Mitchell
,
T.
Wang
,
P.
Nogueira
,
O.
Schmidt
,
V.
Jaunet
,
D.
Duke
,
P.
Jordan
, and
A.
Towne
, “
Waves in screeching jets
,”
J. Fluid Mech.
913
,
A7
(
2021
).
25.
H.
Shen
and
C. K. W.
Tam
, “
Three-dimensional numerical simulation of the jet screech phenomenon
,”
AIAA J.
40
,
33
(
2002
).
26.
C. K. W.
Tam
and
F. Q.
Hu
, “
On the three families of instability waves of high-speed jets
,”
J. Fluid Mech.
201
,
447
(
1989
).
27.
D.
Edgington-Mitchell
,
V.
Jaunet
,
P.
Jordan
,
A.
Towne
,
J.
Soria
, and
D.
Honnery
, “
Upstream-travelling acoustic jet modes as a closure mechanism for screech
,”
J. Fluid Mech.
855
,
R1
(
2018
).
28.
R.
Gojon
,
C.
Bogey
, and
M.
Mihaescu
, “
Oscillation modes in screeching jets
,”
AIAA J.
56
,
2918
(
2018
).
29.
M.
Mancinelli
,
V.
Jaunet
,
P.
Jordan
, and
A.
Towne
, “
Screech-tone prediction using upstream-travelling jet modes
,”
Exp. Fluids
60
,
22
(
2019
).
30.
J. H.
Gao
and
X. D.
Li
, “
A multi-mode screech frequency prediction formula for circular supersonic jets
,”
J. Acoust. Soc. Am.
127
,
1251
(
2010
).
31.
P. A. S.
Nogueira
,
P.
Jordan
,
V.
Jaunet
,
A. V. G.
Cavalieri
,
A.
Towne
, and
D.
Edgington-Mitchell
, “
Absolute instability in shock-containing jets
,”
J. Fluid Mech.
930
,
A10
(
2022
).
32.
P.
Nogueira
, “
Closure mechanism of the A1 and A2 modes in jet screech
,”
J. Fluid Mech.
936
,
A10
(
2022
).
33.
J.
Sheng
,
X.
Li
,
Y.
Wang
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
Evolution of effective source and screech mode in compressible starting jet
,”
AIAA J.
60
,
4068
(
2022
).
34.
X.
Hu
and
N.
Adams
, “
Scale separation for implicit large eddy simulation
,”
J. Comput. Phys.
230
,
7240
(
2011
).
35.
J. L.
Steger
and
R. F.
Warming
, “
Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods
,”
J. Comput. Phys.
40
,
263
(
1981
).
36.
D. S.
Balsara
and
C.-W.
Shu
, “
Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
,”
J. Comput. Phys.
160
,
405
(
2000
).
37.
M.
Wu
and
M. P.
Martin
, “
Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp
,”
AIAA J.
45
,
879
(
2007
).
38.
S. J.
Ruuth
and
R.
Spiteri
, “
High-order strong-stability-preserving Runge–Kutta methods with downwind-biased spatial discretizations
,”
SIAM J. Numer. Anal.
42
,
974
(
2004
).
39.
K. W.
Thompson
, “
Time dependent boundary conditions for hyperbolic systems
,”
J. Comput. Phys.
89
,
439
(
1990
).
40.
Y.
Morinishi
,
O. V.
Vasilyev
, and
T.
Ogi
, “
Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations
,”
J. Comput. Phys.
197
,
686
(
2004
).
41.
C.
Bogey
and
C.
Bailly
, “
Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets
,”
J. Fluid Mech.
663
,
507
(
2010
).
42.
B.
Schlichting
and
T.
Kestin
,
Boundary-Layer Theory
(
Springer
,
Berlin/Heidelberg
,
2017
).
43.
N.-H.
Liu
,
X.-R.
Li
,
P.-F.
Hao
,
X.-W.
Zhang
, and
F.
He
, “
Mode switch in tonal under-expanded impinging jets
,”
Phys. Fluids
33
,
124102
(
2021
).
44.
X.
Li
,
N.
Liu
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
Screech feedback loop and mode staging process of axisymmetric underexpanded jets
,”
Exp. Therm. Fluid Sci.
122
,
110323
(
2021
).
45.
D.
Edgington-Mitchell
,
K.
Oberleithner
,
D. R.
Honnery
, and
J.
Soria
, “
Coherent structure and sound production in the helical mode of a screeching axisymmetric jet
,”
J. Fluid Mech.
748
,
822
(
2014
).
46.
H.
Zhang
,
N.
Aubry
,
Z.
Chen
,
W.
Wu
, and
S.
Sha
, “
The evolution of the initial flow structures of a highly under-expanded circular jet
,”
J. Fluid Mech.
871
,
305
(
2019
).
47.
D.
Edgington-Mitchell
,
J.
Weightman
,
S.
Lock
,
R.
Kirby
,
V.
Nair
,
J.
Soria
, and
D.
Honnery
, “
The generation of screech tones by shock leakage
,”
J. Fluid Mech.
908
,
A46
(
2021
).
48.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5–28
(
2010
).
49.
M. R.
Jovanović
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
50.
A. N.
Rao
,
A.
Kushari
, and
A. C.
Mandal
, “
Screech characteristics of under-expanded high aspect ratio elliptic jet
,”
Phys. Fluids
32
,
076106
(
2020
).
51.
C.-C.
Ye
,
P.-J.-Y.
Zhang
,
Z.-H.
Wan
,
D.-J.
Sun
, and
X.-Y.
Lu
, “
Numerical investigation of the bevelled effects on shock structure and screech noise in planar supersonic jets
,”
Phys. Fluids
32
,
086103
(
2020
).
52.
C. K. W.
Tam
and
K. K.
Ahuja
, “
Theoretical model of discrete tone generation by impinging jets
,”
J. Fluid Mech.
214
,
67
(
1990
).
53.
T.
Aaron
,
O. T.
Schmidt
, and
C.
Tim
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
(
2018
).
54.
M. G.
Berry
,
A. S.
Magstadt
, and
M. N.
Glauser
, “
Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets
,”
Phys. Fluids
29
,
020706
(
2017
).
55.
S.
Karami
and
J.
Soria
, “
Influence of nozzle external geometry on wavepackets in under-expanded supersonic impinging jets
,”
J. Fluid Mech.
929
,
A20
(
2021
).
56.
O. T.
Schmidt
and
T.
Colonius
, “
Guide to spectral proper orthogonal decomposition
,”
AIAA J.
58
,
1023
(
2020
).
You do not currently have access to this content.