In the present study, we perform an active proportional (P) feedback control of laminar and turbulent flows over a circular cylinder with an averaged velocity sensor to reduce its drag and lift fluctuations. As a sensor for the feedback control, we adopt an averaged transverse velocity on the centerline of the wake. For the averaging of the transverse sensing velocity, we consider both temporal averaging over a finite period and spatial averaging in the spanwise direction. As a control input, the blowing/suction actuation is provided on the cylinder surface near the flow separation, and its magnitude is linearly proportional to the averaged transverse sensing velocity. With the control, the fluctuations of the transverse sensing velocity are significantly reduced and the vortices right after the cylinder and the Kármán vortex shedding in the wake are weakened, resulting in substantial reductions of the mean drag and lift fluctuations. Furthermore, it is shown that the adoption of the averaged sensing velocity makes the P control successful for a wider range of sensing locations in laminar flow at Re =100 and is essential for the success of the P control in turbulent flow at Re =3900. With the optimal control parameters, the reductions of the mean drag and lift fluctuations for turbulent flow at Re =3900 are about 11% and 61%, respectively. The present P control maintains the magnitude of the blowing/suction actuation less than 1% of the free-stream velocity, and thus, the control input power is very small, leading to an excellent control efficiency.

1.
H.
Choi
,
W. P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
2.
J. F.
Williams
and
B.
Zhao
, “
The active control of vortex shedding
,”
J. Fluids Struct.
3
,
115
122
(
1989
).
3.
K.
Roussopoulos
, “
Feedback control of vortex shedding at low Reynolds numbers
,”
J. Fluid Mech.
248
,
267
296
(
1993
).
4.
D.
Park
,
D.
Ladd
, and
E.
Hendricks
, “
Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds numbers
,”
Phys. Fluids
6
,
2390
2405
(
1994
).
5.
S.
Hiejima
,
T.
Kumao
, and
T.
Taniguchi
, “
Feedback control of vortex shedding around a bluff body by velocity excitation
,”
Int. J. Comput. Fluid Dyn.
19
,
87
92
(
2005
).
6.
S. J.
Illingworth
,
H.
Naito
, and
K.
Fukagata
, “
Active control of vortex shedding: An explanation of the gain window
,”
Phys. Rev. E
90
,
043014
(
2014
).
7.
D.
Son
,
S.
Jeon
, and
H.
Choi
, “
A proportional–integral–differential control of flow over a circular cylinder
,”
Philos. Trans. R. Soc. A
369
,
1540
1555
(
2011
).
8.
D.
Son
and
H.
Choi
, “
Iterative feedback tuning of the proportional-integral-differential control of flow over a circular cylinder
,”
IEEE Trans. Control Syst. Technol.
27
,
1385
1396
(
2018
).
9.
A.
Mishra
,
M.
Hanzla
, and
A.
De
, “
Passive control of the onset of vortex shedding in flow past a circular cylinder using slit
,”
Phys. Fluids
32
,
013602
(
2020
).
10.
K.
Sharma
and
S.
Dutta
, “
Flow control over a square cylinder using attached rigid and flexible splitter plate at intermediate flow regime
,”
Phys. Fluids
32
,
014104
(
2020
).
11.
D.
Gao
,
H.
Meng
,
Y.
Huang
,
G.
Chen
, and
W.-L.
Chen
, “
Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points
,”
Phys. Fluids
33
,
047101
(
2021
).
12.
K.
Lee
,
Y.
Kozato
,
S.
Kikuchi
, and
S.
Imao
, “
Numerical simulation of flow control around a rectangular cylinder by dielectric barrier discharge plasma actuators
,”
Phys. Fluids
34
,
077102
(
2022
).
13.
F.
Abergel
and
R.
Temam
, “
On some control problems in fluid mechanics
,”
Theor. Comput. Fluid Dyn.
1
,
303
325
(
1990
).
14.
C.
Min
and
H.
Choi
, “
Suboptimal feedback control of vortex shedding at low Reynolds numbers
,”
J. Fluid Mech.
401
,
123
156
(
1999
).
15.
M.
Bergmann
,
L.
Cordier
, and
J.-P.
Brancher
, “
Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model
,”
Phys. Fluids
17
,
097101
(
2005
).
16.
X.
Huang
, “
Feedback control of vortex shedding from a circular cylinder
,”
Exp. Fluids
20
,
218
224
(
1996
).
17.
H.
Warui
and
N.
Fujisawa
, “
Feedback control of vortex shedding from a circular cylinder by cross-flow cylinder oscillations
,”
Exp. Fluids
21
,
49
56
(
1996
).
18.
M.
Zhang
,
L.
Cheng
, and
Y.
Zhou
, “
Closed-loop-controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes
,”
Phys. Fluids
16
,
1439
1448
(
2004
).
19.
A.
Prasad
and
C. H.
Williamson
, “
The instability of the shear layer separating from a bluff body
,”
J. Fluid Mech.
333
,
375
402
(
1997
).
20.
D.
Son
, “
A proportional-integral-differential control of flows over a circular cylinder and in a turbulent plane diffuser
,” Ph.D. thesis (
Seoul National University
,
2014
).
21.
J.
Kim
,
D.
Kim
, and
H.
Choi
, “
An immersed-boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
,
132
150
(
2001
).
22.
N.
Park
,
S.
Lee
,
J.
Lee
, and
H.
Choi
, “
A dynamic subgrid-scale eddy viscosity model with a global model coefficient
,”
Phys. Fluids
18
,
125109
(
2006
).
23.
J.
Lee
,
H.
Choi
, and
N.
Park
, “
Dynamic global model for large eddy simulation of transient flow
,”
Phys. Fluids
22
,
075106
(
2010
).
24.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier–Stokes equations
,”
J. Comput. Phys.
59
,
308
323
(
1985
).
25.
K.
Kim
,
S.-J.
Baek
, and
H. J.
Sung
, “
An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations
,”
Int. J. Numer. Methods Fluids
38
,
125
138
(
2002
).
26.
G.
Yun
,
D.
Kim
, and
H.
Choi
, “
Vortical structures behind a sphere at subcritical Reynolds numbers
,”
Phys. Fluids
18
,
015102
(
2006
).
27.
J.
Lee
,
J.
Kim
,
H.
Choi
, and
K.-S.
Yang
, “
Sources of spurious force oscillations from an immersed boundary method for moving-body problems
,”
J. Comput. Phys.
230
,
2677
2695
(
2011
).
28.
R. D.
Henderson
, “
Details of the drag curve near the onset of vortex shedding
,”
Phys. Fluids
7
,
2102
2104
(
1995
).
29.
C.
Norberg
, “
Fluctuating lift on a circular cylinder: review and new measurements
,”
J. Fluids Struct.
17
,
57
96
(
2003
).
30.
O.
Lehmkuhl
,
I.
Rodríguez
,
R.
Borrell
, and
A.
Oliva
, “
Low-frequency unsteadiness in the vortex formation region of a circular cylinder
,”
Phys. Fluids
25
,
085109
(
2013
).
31.
M.
Breuer
, “
Large eddy simulation of the subcritical flow past a circular cylinder: Numerical and modeling aspects
,”
Int. J. Numer. Methods Fluids
28
,
1281
1302
(
1998
).
32.
A. G.
Kravchenko
and
P.
Moin
, “
Numerical studies of flow over a circular cylinder at ReD = 3900
,”
Phys. Fluids
12
,
403
417
(
2000
).
33.
D.
You
and
P.
Moin
, “
Effects of hydrophobic surfaces on the drag and lift of a circular cylinder
,”
Phys. Fluids
19
,
081701
(
2007
).
34.
J.
Kim
and
H.
Choi
, “
Distributed forcing of flow over a circular cylinder
,”
Phys. Fluids
17
,
033103
(
2005
).
35.
C.
Norberg
, “
LDV-measurements in the near wake of a circular cylinder
,” ASME Paper No. FEDSM98-521,
1998
.
36.
K.
Lam
,
Y.
Lin
,
L.
Zou
, and
Y.
Liu
, “
Investigation of turbulent flow past a yawed wavy cylinder
,”
J. Fluids Struct.
26
,
1078
1097
(
2010
).
37.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
38.
W.
Kim
,
J.
Lee
, and
H.
Choi
, “
Flow around a helically twisted elliptic cylinder
,”
Phys. Fluids
28
,
053602
(
2016
).
39.
H.
Park
,
D.
Lee
,
W.-P.
Jeon
,
S.
Hahn
,
J.
Kim
,
J.
Kim
,
J.
Choi
, and
H.
Choi
, “
Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device
,”
J. Fluid Mech.
563
,
389
414
(
2006
).
40.
K.
Kwon
and
H.
Choi
, “
Control of laminar vortex shedding behind a circular cylinder using splitter plates
,”
Phys. Fluids
8
,
479
486
(
1996
).
41.
E.
Anderson
and
A.
Szewczyk
, “
Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations
,”
Exp. Fluids
23
,
161
174
(
1997
).
42.
R.
Mahmood
,
J.
Awrejcewicz
,
I.
Siddique
,
A. H.
Majeed
,
W.
Pawłowski
 et al., “
Effectiveness of splitter plate to control fluid forces on a circular obstacle in a transient flow: Fem computations
,”
Sci. Rep.
12
(
1
),
13602
(
2022
).
43.
D.
Arcas
and
L.
Redekopp
, “
Aspects of wake vortex control through base blowing/suction
,”
Phys. Fluids
16
,
452
456
(
2004
).
44.
M.
Schumm
,
E.
Berger
, and
P. A.
Monkewitz
, “
Self-excited oscillations in the wake of two-dimensional bluff bodies and their control
,”
J. Fluid Mech.
271
,
17
53
(
1994
).
45.
Z.
Wu
and
H.
Choi
, “
Modification of flow behind a circular cylinder by steady and time-periodic blowing
,”
Phys. Fluids
33
,
115126
(
2021
).
46.
H.
Naito
and
K.
Fukagata
, “
Control of flow around a circular cylinder for minimizing energy dissipation
,”
Phys. Rev. E
90
,
053008
(
2014
).
47.
K.
Lam
and
Y.
Lin
, “
Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers
,”
J. Fluid Mech.
620
,
195
220
(
2009
).
48.
H. S.
Yoon
,
M. I.
Kim
, and
H. J.
Kim
, “
Reynolds number effects on the flow over a twisted cylinder
,”
Phys. Fluids
31
,
025119
(
2019
).
49.
S.
Jeon
, “
Active controls of unsteady laminar flow over a sphere
,” Ph.D. thesis (
Seoul National University
,
2009
).
50.
J.
Lee
and
D.
Son
, “
Proportional feedback control of laminar flow over a hemisphere
,”
J. Mech. Sci. Technol.
30
,
3667
3672
(
2016
).
51.
J.
Yun
and
J.
Lee
, “
Active feedback control of flow over a circular cylinder with wall pressure sensor using machine learning
,” in
APS Division of Fluid Dynamics Meeting Abstracts
,
2019
.
You do not currently have access to this content.