A variety of combustion models for large eddy simulation of premixed turbulent flames have been developed and validated over the years. Validation studies concentrate on relevant mean quantities and turbulent fluctuations; however, the prediction of flame dynamics is typically not taken into account. Furthermore, it is difficult to meaningfully compare the computational efficiency of model formulations due to different compute resources, meshes, code bases, and numerics. The present study compares turbulent combustion models on the same code base, keeping boundary conditions, meshes, and numerical settings constant. The reliability and versatility of two turbulent combustion models, i.e., the artificially thickened flame and flame surface density formulations, are assessed by applying them to a variety of operating conditions and burner configurations. In particular, for a premixed methane swirl burner, we consider three power ratings by changing the inflow velocity, which increases the demand on the sub-grid scale model due to increased sub-grid scale wrinkling. A change in swirler position modifies the interference of swirl and acoustic perturbations, with a significant impact on flame dynamics. Changes in thermal boundary condition and combustion chamber size provide insight into the consequences of quenching effects resulting from heat losses on flame anchoring and flame topology.

1.
B.
Fiorina
,
R.
Mercier
,
G.
Kuenne
,
A.
Ketelheun
,
A.
Avdić
,
J.
Janicka
,
D.
Geyer
,
A.
Dreizler
,
E.
Alenius
,
C.
Duwig
,
P.
Trisjono
,
K.
Kleinheinz
,
S.
Kang
,
H.
Pitsch
,
F.
Proch
,
F.
Cavallo Marincola
, and
A.
Kempf
, “
Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion
,”
Combust. Flame
162
,
4264
4282
(
2015
).
2.
S.
Hochgreb
, “
Mind the gap: Turbulent combustion model validation and future needs
,”
Proc. Combust. Inst.
37
,
2091
2107
(
2019
).
3.
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, Progress in Astronautics and Aeronautics, edited by
T.
Lieuwen
and
V.
Yang
(
AIAA
,
2005
), Vol.
210
.
4.
A. P.
Dowling
, “
Nonlinear self-excited oscillations of a ducted flame
,”
J. Fluid Mech.
346
,
271
290
(
1997
).
5.
T.
Schuller
,
T.
Poinsot
, and
S.
Candel
, “
Dynamics and control of premixed combustion systems based on flame transfer and describing functions
,”
J. Fluid Mech.
894
,
P1
(
2020
).
6.
B.
Franzelli
,
E.
Riber
,
L. Y.
Gicquel
, and
T.
Poinsot
, “
Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame
,”
Combust. Flame
159
,
621
637
(
2012
).
7.
A.
Giauque
,
L.
Selle
,
L.
Gicquel
,
T.
Poinsot
,
H.
Buechner
,
P.
Kaufmann
, and
W.
Krebs
, “
System identification of a large-scale swirled partially premixed combustor using LES and measurements
,”
J. Turbul.
6
,
N21
(
2005
).
8.
O.
Colin
,
F.
Ducros
,
D.
Veynante
, and
T.
Poinsot
, “
A thickenend flame model for large eddy simulation of turbulent premixed combustion
,”
Phys. Fluids
12
,
1843
1863
(
2000
).
9.
L.
Tay-Wo-Chong
,
T.
Komarek
,
R.
Kaess
,
S.
Föller
, and
W.
Polifke
, “
Identification of flame transfer functions from LES of a premixed swirl burner
,” in
Proceedings of ASME Turbo Expo
(
ASME
,
2010
), pp.
623
635
.
10.
L.
Tay-Wo-Chong
,
S.
Bomberg
,
A.
Ulhaq
,
T.
Komarek
, and
W.
Polifke
, “
Comparative validation study on identification of premixed flame transfer function
,”
J. Eng. Gas Turbines Power
134
,
021502
(
2012
).
11.
T.
Komarek
and
W.
Polifke
, “
Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner
,”
J. Eng. Gas Turbines Power
132
,
061503
(
2010
).
12.
L.
Tay-Wo-Chong
and
W.
Polifke
, “
Large eddy simulation-based study of the influence of thermal boundary condition and combustor confinement on premix flame transfer functions
,”
J. Eng. Gas Turbines Power
135
,
021502
(
2013
).
13.
R.
Mercier
,
T. F.
Guiberti
,
A.
Chatelier
,
D.
Durox
,
O.
Gicquel
,
N.
Darabiha
,
T.
Schuller
, and
B.
Fiorina
, “
Experimental and numerical investigation of the influence of thermal boundary conditions on premixed swirling flame stabilization
,”
Combust. Flame
171
,
42
58
(
2016
).
14.
C.
Koren
,
R.
Vicquelin
, and
O.
Gicquel
, “
High-fidelity multiphysics simulation of a confined premixed swirling flame combining large-eddy simulation, wall heat conduction and radiative energy transfer
,” in
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
(
American Society of Mechanical Engineers Digital Collection
,
2017
).
15.
A.
Chatelier
,
T.
Guiberti
,
R.
Mercier
,
N.
Bertier
,
B.
Fiorina
, and
T.
Schuller
, “
Experimental and numerical investigation of the response of a swirled flame to flow modulations in a non-adiabatic combustor
,”
Flow, Turbul. Combust.
102
,
995
1023
(
2019
).
16.
P. C.
Nassini
,
D.
Pampaloni
, and
A.
Andreini
, “
Impact of stretch and heat loss on flame stabilization in a lean premixed flame approaching blow-off
,”
Energy Procedia
148
,
250
257
(
2018
).
17.
J. A.
van Oijen
,
A.
Donini
,
R. J. M.
Bastiaans
,
J. H. M.
ten Thije Boonkkamp
, and
L. P. H.
de Goey
, “
State-of-the-art in premixed combustion modeling using flamelet generated manifolds
,”
Prog. Energy Combust. Sci.
57
,
30
74
(
2016
).
18.
D.
Pampaloni
,
A.
Andreini
,
B.
Facchini
, and
C. O.
Paschereit
, “
LES modelling of the flame describing function of a lean premixed swirl stabilized flame
,” in
Joint Propulsion Conference
(
American Institute of Aeronautics and Astronautics
,
2018
).
19.
D.
Fredrich
,
W. P.
Jones
, and
A. J.
Marquis
, “
A combined oscillation cycle involving self-excited thermo-acoustic and hydrodynamic instability mechanisms
,”
Phys. Fluids
33
,
085122
(
2021
).
20.
A.
Avdonin
,
A.
Javareshkian
, and
W.
Polifke
, “
Prediction of premixed flame dynamics using large eddy simulation with tabulated chemistry and Eulerian stochastic fields
,”
J. Eng. Gas Turbines Power
141
,
111024
(
2019
).
21.
V.
Jaganath
and
M.
Stoellinger
, “
Transported and presumed probability density function modeling of the Sandia flames with flamelet generated manifold chemistry
,”
Phys. Fluids
33
,
045123
(
2021
).
22.
A.
Mousemi
and
W.
Kendal Bushe
, “
The joint probability density function of mixture fraction, reaction progress variable, and total enthalpy in a stratified, swirl-stabilized turbulent flame
,”
Phys. Fluids
33
,
035106
(
2021
).
23.
H.
Wang
, “
Fully consistent Eulerian Monte Carlo fields method for solving probability density function transport equations in turbulence modeling
,”
Phys. Fluids
33
,
015118
(
2021
).
24.
S.-J.
Baik
,
E.
Inanc
,
M.
Rieth
, and
A. M.
Kempf
, “
Lagrangian filtered density function modeling of a turbulent stratified flame combined with flamelet approach
,”
Phys. Fluids
34
,
075110
(
2022
).
25.
V. L.
Zimont
and
A. N.
Lipatnikov
, “
A numerical model of premixed turbulent combustion of gases
,”
Chem. Phys. Rep.
14
,
993
1025
(
1995
).
26.
T.
Komarek
,
L.
Tay-Wo-Chong
,
M.
Zellhuber
,
A.
Huber
, and
W.
Polifke
, “
Modeling the effect of heat loss on flame stabilization in shear layers
” in International Conference on Jets, Wakes and Separated Flows, ICJWSF (
2008
).
27.
R.
Keppeler
,
M.
Pfitzner
,
L.
Tay Wo Chong
,
T.
Komarek
, and
W.
Polifke
, “
Including heat loss and quench effects in algebraic models for large eddy simulation of premixed combustion
,” in
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
(
American Society of Mechanical Engineers Digital Collection
,
2012
), pp.
457
467
.
28.
L.
Tay-Wo-Chong
,
A.
Scarpato
, and
W.
Polifke
, “
LES combustion model with stretch and heat loss effects for prediction of premix flame characteristics and dynamics
,” in
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, Volume 4A (
ASME
,
Charlotte, NC
,
2017
).
29.
D.
Iurashev
,
G.
Campa
,
V. V.
Anisimov
, and
E.
Cosatto
, “
Two-step approach for pressure oscillations prediction in gas turbine combustion chambers
,”
Int. J. Spray Combust. Dyn.
9
,
424
437
(
2017
).
30.
P. A.
Libby
and
F. A.
Williams
, “
Strained premixed laminar flames under nonadiabatic conditions
,”
Combust. Sci. Technol.
31
,
1
42
(
1983
).
31.
E.
Mastorakos
,
A. M. K. P.
Taylor
, and
J. H.
Whitelaw
, “
Extinction of turbulent counterflow flames with reactants diluted by hot products
,”
Combust. Flame
102
,
101
114
(
1995
).
32.
J.
Kuhlmann
,
S.
Guo
, and
W.
Polifke
, “
A top level parallelization and data fusion approach for identification of flame transfer functions with increased reliability, accuracy and efficiency
,” in
27th International Congress on Sound and Vibration 2021 (ICSV27)
[
International Institute of Acoustics and Vibration (IIAV
),
2021
].
33.
E.
Inanc
,
A. M.
Kempf
, and
N.
Chakraborty
, “
Effect of sub-grid wrinkling factor modelling on the large eddy simulation of turbulent stratified combustion
,”
Combust. Theory Modell.
25
,
911
939
(
2021
).
34.
T.
Ma
,
O. T.
Stein
,
N.
Chakraborty
, and
A. M.
Kempf
, “
A posteriori testing of algebraic flame surface density models for LES
,”
Combust. Theory Modell.
17
,
431
482
(
2013
).
35.
U.
Allauddin
,
S. R. R.
Lomada
, and
M.
Pfitzner
, “
Investigation of pressure and the Lewis number effects in the context of algebraic flame surface density closure for LES of premixed turbulent combustion
,”
Theor. Comput. Fluid Dyn.
35
,
17
37
(
2021
).
36.
N. W.
Chakroun
,
S. J.
Shanbhogue
,
Y.
Dagan
, and
A. F.
Ghoniem
, “
Flamelet structure in turbulent premixed swirling oxy-combustion of methane
,”
Proc. Combust. Inst.
37
,
4579
4586
(
2019
).
37.
M.
Boger
,
D.
Veynante
,
H.
Boughanem
, and
A.
Trouvé
, “
Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion
,”
Symp. (Int.) Combust.
27
,
917
925
(
1998
).
38.
S. P. R.
Muppala
,
N. K.
Aluri
,
F.
Dinkelacker
, and
A.
Leipertz
, “
Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa
,”
Combust. Flame
140
,
257
266
(
2005
).
39.
C.
Fureby
, “
A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion
,”
Proc. Combust. Inst.
30
,
593
601
(
2005
).
40.
C.
Angelberger
,
D.
Veynante
,
F.
Egolfopoulos
, and
T.
Poinsot
, “
Large eddy simulations of combustion instabilities in premixed flames
,” in
Proceedings of the Summer Program
,
1998
.
41.
S. J.
Brookes
,
R. S.
Cant
,
I. D. J.
Dupere
, and
A. P.
Dowling
, “
Computational modeling of self-excited combustion instabilities
,”
J. Eng. Gas Turbines Power
123
,
322
326
(
2001
).
42.
C. Y.
Lee
and
R. S.
Cant
, “
Nonlinear hydrodynamics of a bluff-body stabilized turbulent premixed flame
,” in
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
(
American Society of Mechanical Engineers Digital Collection
,
2016
).
43.
N.
Chakraborty
and
M.
Klein
, “
A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation
,”
Phys. Fluids
20
,
085108
(
2008
).
44.
E. R.
Hawkes
and
R. S.
Cant
, “
A flame surface density approach to large-eddy simulation of premixed turbulent combustion
,”
Proc. Combust. Inst.
28
,
51
58
(
2000
).
45.
S.
Richard
, “
Large eddy simulation of flow and combustion in spark ignition engines
,” Ph.D. thesis (
IFP-Ecole Centrale Paris
,
2005
).
46.
G.
Lecocq
,
S.
Richard
,
O.
Colin
, and
L.
Vervisch
, “
Gradient and counter-gradient modeling in premixed flames: Theoretical study and application to the LES of a lean premixed turbulent swirl-burner
,”
Combust. Sci. Technol.
182
,
465
479
(
2010
).
47.
F.
Cavallo Marincola
,
T.
Ma
, and
A. M.
Kempf
, “
Large eddy simulations of the Darmstadt turbulent stratified flame series
,”
Proc. Combust. Inst.
34
,
1307
1315
(
2013
).
48.
S.
Pope
, “
Ten questions concerning the large-eddy simulation of turbulent flows
,”
New J. Phys.
6
,
35
(
2004
).
49.
S.
Föller
and
W.
Polifke
, “
Advances in identification techniques for aero-acoustic scattering coefficients from large eddy simulation
,” in
18th International Congress on Sound and Vibration (ICSV18)
,
Rio de Janeiro, Brazil
,
2011
.
50.
F.
Charlette
,
C.
Meneveau
, and
D.
Veynante
, “
A power-law flame wrinkling model for les of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests
,”
Combust. Flame
131
,
159
180
(
2002
).
51.
G.
Wang
,
M.
Boileau
, and
D.
Veynante
, “
Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion
,”
Combust. Flame
158
,
2199
2213
(
2011
).
52.
D.
Veynante
and
V.
Moureau
, “
Analysis of dynamic models for large eddy simulations of turbulent premixed combustion
,”
Combust. Flame
162
,
4622
4642
(
2015
).
53.
A.
Trouvé
and
T.
Poinsot
, “
The evolution equation for the flame surface density in turbulent premixed combustion
,”
J. Fluid Mech.
278
,
1
31
(
1994
).
54.
R.
Keppeler
,
E.
Tangermann
,
U.
Allaudin
, and
M.
Pfitzner
, “
LES of low to high turbulent combustion in an elevated pressure environment
,”
Flow, Turbul. Combust.
92
,
767
802
(
2014
).
55.
W.
Polifke
,
P.
Flohr
, and
M.
Brandt
, “
Modeling of inhomogeneously premixed combustion with an extended TFC model
,”
J. Eng. Gas Turbines Power
124
,
58
65
(
2002
).
56.
See
P.
Flohr
and
H.
Pitsch
, https://www.semanticscholar.org/paper/A-turbulent-flame-speed-closure-model-for-LES-of-Flohr-Pitsch/dcac28602c67783765e82702b8db8ddafa5223df for “
A turbulent flame speed closure model for LES of industrial burner flows
,” (
2001
).
57.
V. L.
Zimont
and
V.
Battaglia
, “
Joint RANS/LES approach to premixed flame modelling in the context of the TFC combustion model
,”
Flow, Turbul. Combust.
77
,
305
331
(
2006
).
58.
E. R.
Hawkes
and
R. S.
Cant
, “
Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion
,”
Combust. Flame
126
,
1617
1629
(
2001
).
59.
T. M.
Alshaalan
and
C. J.
Rutland
, “
Turbulence, scalar transport, and reaction rates in flame-wall interaction
,”
Symp. (Int.) Combust.
27
,
793
799
(
1998
).
You do not currently have access to this content.