This paper highlights a direct numerical simulation study on the flow field of a coaxial synthetic jet (CSJ) generated from two independently controlled synthetic jet actuators, which are combined coaxially with 0° orientation angle. The jet is issued into a quiescent environment from inner and annular openings (orifices) with equal hydraulic diameters, employing an oscillating boundary. Seven different mass flux ratios (Mr) such as 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, and 3.0 are considered for the study. The average velocity (Uavg) of inner jet, measured at orifice exit, is kept at 0.7 m/s (Reynolds number, Re=135), and the same is varied for the annular jet to achieve the desired Mr s. The influence of Mr s on the vortex rings, evolved from inner and annular orifices, along with their dynamics, is predicted by furnishing the instantaneous flow field. Also, we examine the effect of Mr s on the mean flow parameters of the CSJ. Moreover, the CSJ flow field is compared with the inner cavity synthetic jet (SJ), and annular cavity SJ under identical conditions, to demonstrate the superior performance of the CSJ over the single cavity SJs. For CSJ, the azimuthal instability of the evolved vortex rings can be triggered by decreasing the Mr, which results in a wide jet. For Mr1.0, the CSJ retains its axisymmetric nature, and the interaction of vortex rings emanating from the inner and annular cavities influences the strength and spreading of the CSJ. The modal decomposition of the instantaneous flow field is also performed using proper orthogonal decomposition method to gain insight of the coherent vortical structures present in the modes. The study will be useful for deploying such novel coaxial synthetic jets in various applications.

1.
B. L.
Smith
and
A.
Glezer
, “
The formation and evolution of synthetic jets
,”
Phys. Fluids
10
(
9
),
2281
2297
(
1998
).
2.
J. E.
Cater
and
J.
Soria
, “
The evolution of round zero-net-mass-flux jets
,”
J. Fluid Mech.
472
,
167
(
2002
).
3.
F.
Hussain
and
H. S.
Husain
, “
Elliptic jets. Part 1. Characteristics of unexcited and excited jets
,”
J. Fluid Mech.
208
,
257
320
(
1989
).
4.
R.
Holman
,
Y.
Utturkar
,
R.
Mittal
,
B. L.
Smith
, and
L.
Cattafesta
, “
Formation criterion for synthetic jets
,”
AIAA J.
43
(
10
),
2110
2116
(
2005
).
5.
B. L.
Smith
and
A.
Glezer
, “
Vectoring of adjacent synthetic jets
,”
AIAA J.
43
(
10
),
2117
2124
(
2005
).
6.
J.
Pasa
,
S.
Panda
, and
V.
Arumuru
, “
Influence of Strouhal number and phase difference on the flow behavior of a synthetic jet array
,”
Phys. Fluids
34
(
6
),
065118
(
2022
).
7.
H. H.
Ho
,
E. E.
Essel
, and
P. E.
Sullivan
, “
The interactions of a circular synthetic jet with a turbulent crossflow
,”
Phys. Fluids.
34
,
075108
(
2022
).
8.
M.
Kim
,
E. E.
Essel
, and
P. E.
Sullivan
, “
Effect of varying frequency of a synthetic jet on flow separation over an airfoil
,”
Phys. Fluids
34
(
1
),
015122
(
2022
).
9.
Z.
Liu
,
Q.
Yu
,
Z.
Mei
, and
D.
Xie
, “
Impingement cooling performance analysis and improvement of synthetic jets for electronic devices
,”
J. Thermophys. Heat Transfer
33
(
3
),
856
864
(
2019
).
10.
M. B.
Gillespie
 et al., “
Local convective heat transfer from a constant heat flux flat plate cooled by synthetic air jets
,”
J. Heat Transfer
128
,
990
1000
(
2006
).
11.
S.
Alimohammadi
,
E.
Fanning
,
T.
Persoons
, and
D. B.
Murray
, “
Characterization of flow vectoring phenomenon in adjacent synthetic jets using CFD and PIV
,”
Comput. Fluids
140
,
232
246
(
2016
).
12.
A.
Crook
and
N.
Wood
, “
Measurements and visualisations of synthetic jets
,” AIAA Paper No. 2001-145,
2001
.
13.
X.
Geng
,
W.
Zhang
,
Z.
Shi
,
Z.
Li
,
Q.
Sun
, and
Z.
Sun
, “
Experimental study on frequency characteristics of the actuations produced by plasma synthetic jet actuator and its geometric effects
,”
Phys. Fluids
33
(
6
),
067113
(
2021
).
14.
H.
Zong
and
M.
Kotsonis
, “
Three-dimensional vortical structures generated by plasma synthetic jets in crossflow
,”
Phys. Fluids
32
(
6
),
061701
(
2020
).
15.
M. A.
Feero
,
P.
Lavoie
, and
P. E.
Sullivan
, “
Influence of cavity shape on synthetic jet performance
,”
Sens. Actuators, A
223
,
1
10
(
2015
).
16.
S.
Eric
and
S.
Goran
, “
A valve-less diffuser/nozzle-based fluid pump
,”
Sens. Actuators, A
39
(
12
),
159
167
(
1993
).
17.
Z.
Trávníček
,
A. I.
Fedorchenko
, and
A. B.
Wang
, “
Enhancement of synthetic jets by means of an integrated valve-less pump. Part I. Design of the actuator
,”
Sens. Actuators, A
120
(
1
),
232
240
(
2005
).
18.
Z.
Trávníček
,
V.
Tesař
, and
A. B.
Wang
, “
Enhancement of synthetic jets by means of an integrated valve-less pump. Part II. Numerical and experimental studies
,”
Sens. Actuators, A
125
(
1
),
50
58
(
2005
).
19.
Z.
Trávníček
,
T.
Vít
, and
V.
Tesař
, “
Hybrid synthetic jets as the nonzero-net-mass-flux synthetic jets
,”
Phys. Fluids
18
(
8
),
081701
(
2006
).
20.
J.
Kordík
and
Z.
Trávníček
, “
Novel fluidic diode for hybrid synthetic jet actuator
,”
J. Fluids Eng.
135
(
10
),
101101
(
2013
).
21.
Z.
Trávníček
,
V.
Tesař
, and
J.
Kordík
, “
Performance of synthetic jet actuators based on hybrid and double-acting principles
,”
J. Visualization
11
(
3
),
221
229
(
2008
).
22.
C. C.
Chen
, “
Visualization of new synthetic jet actuator for underwater vehicles
,” in
Proceedings of the 12th International Symposium on Flow Visualization (ISFV-12)(Gottingen)
(
2006
).
23.
A.
Ahmed
and
Z.
Bangash
, “
Axisymmetric coaxial synthetic jets
,” in
40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA
(
2002
).
24.
A.
Ahmed
and
Z. A.
Bangash
, “
Experimental investigation of axisymmetric coaxial synthetic jets
,”
Exp. Therm. Fluid Sci.
33
(
8
),
1142
1148
(
2009
).
25.
Z. B.
Luo
,
Z. X.
Xia
, and
B.
Liu
, “
New generation of synthetic jet actuators
,”
AIAA J.
44
(
10
),
2418
2420
(
2006
).
26.
S. S.
Hsu
,
Z.
Travnicek
,
C. C.
Chou
,
C. C.
Chen
, and
A. B.
Wang
, “
Comparison of double-acting and single-acting synthetic jets
,”
Sens. Actuators, A
203
,
291
299
(
2013
).
27.
S.
Li
,
Z.
Luo
,
X.
Deng
,
W.
Peng
, and
Z.
Liu
, “
Experimental investigation on active control of flow around a finite-length square cylinder using dual synthetic jet
,”
J. Wind Eng. Ind. Aerodyn.
210
,
104519
(
2021
).
28.
A. J.
Ward-Smith
, “
Critical flowmetering: The characteristics of cylindrical nozzles with sharp upstream edges
,”
Int. J. Heat Fluid Flow
1
(
3
),
123
132
(
1979
).
29.
S.
Zhong
,
M.
Jabbal
,
H.
Tang
,
L.
Garcillan
,
F.
Guo
,
N.
Wood
, and
C.
Warsop
, “
Towards the design of synthetic-jet actuators for full-scale flight conditions
,”
Flow, Turbul. Combust.
78
(
3–4
),
283
307
(
2007
).
30.
X. D.
Shi
,
L. H.
Feng
, and
J. J.
Wang
, “
Evolution of elliptic synthetic jets at low Reynolds number
,”
J. Fluid Mech.
868
,
66
96
(
2019
).
31.
J. C. R.
Hunt
,
A.
Wray
, and
P.
Moin
, “
Eddies, stream, and convergence zones in turbulent flows
,”
Report No. CTR-S88
, Center for Turbulence Research,
1988
.
32.
Y.
Dubief
and
F.
Delcayre
, “
On coherent-vortex identification in turbulence
,”
J. Turbul.
1
(
1
),
N11
(
2000
).
33.
A.
McGuinn
,
R.
Farrelly
,
T.
Persoons
, and
D. B.
Murray
, “
Flow regime characterisation of an impinging axisymmetric synthetic jet
,”
Exp. Therm. Fluid Sci.
47
,
241
251
(
2013
).
34.
C.
Meola
,
L.
De Luca
, and
G. M.
Carlomagno
, “
Azimuthal instability in an impinging jet: Adiabatic wall temperature distribution
,”
Exp. Fluids
18
(
5
),
303
310
(
1995
).
35.
D.
Violato
and
F.
Scarano
, “
Three-dimensional evolution of flow structures in transitional circular and chevron jets
,”
Phys. Fluids
23
(
12
),
124104
(
2011
).
36.
J. M.
Shuster
and
D. R.
Smith
, “
Experimental study of the formation and scaling of a round synthetic jet
,”
Phys. Fluids
19
(
4
),
045109
(
2007
).
37.
K.
Mohseni
,
H.
Ran
, and
T.
Colonius
, “
Numerical experiments on vortex ring formation
,”
J. Fluid Mech.
430
,
267
282
(
2001
).
38.
K.
Toyoda
and
R.
Hiramoto
, “
Manipulation of vortex rings for flow control
,”
Fluid Dyn. Res.
41
(
5
),
051402
(
2009
).
39.
K.
Toyoda
and
H.
Mori
, “
Three-dimensional vortical structure and mixing mechanism of a circular jet
,”
J. Visualization
4
(
3
),
239
244
(
2001
).
You do not currently have access to this content.