Macromolecular theory for the rheology of polymer liquids usually proceeds from a scale much larger than chemical bonding. For instance, a bead in a general rigid bead-rod theory can represent a length of the polymer. This is why we sculpt the shape of the macromolecule with a rigid bead-rod model. From the macromolecular hydrodynamics that follow, we then discover that the rheology of polymeric liquids depends on the macromolecular moments of inertia. In this paper, we use this discovery to arrive at a way of proceeding directly from the chemical bonding diagram to dimensionless complex viscosity curves. From the equilibrium conformation of the macromolecule, its atomic masses and positions, we first arrive at the macromolecular principal moments of inertia. From these, we then get the shapes of the complex viscosity curves from first principles thusly. We call this the macromolecular moment method. The zero-shear viscosity and relaxation time must still be fit to measurement. Using space-filling equilibrium structures, we explore the roles of (i) end group type, (ii) degree of polymerization, and (iii) pendant group type. We compare our results with complex viscosity measurements of molten atactic polystyrene.

1.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
31
(
8
),
087107
(
2019
).
2.
M. A.
Kanso
, “
Polymeric liquid behavior in oscillatory shear flow
,” Master's thesis (
Polymers Research Group, Chemical Engineering Department, Queen's University
,
Kingston, Canada
,
2019
).
3.
S. J.
Coombs
,
M. A.
Kanso
,
K. E.
Haddad
, and
A. J.
Giacomin
, “
Complex viscosity of star-branched macromolecules from analytical general rigid bead-rod theory
,”
Phys. Fluids
33
(
9
),
093111
(
2021
).
4.
S. J.
Coombs
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
Cole–Cole relation for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
9
),
093106
(
2020
).
5.
M. A.
Kanso
and
A. J.
Giacomin
, “
van Gurp–Palmen relations for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
3
),
033101
(
2020
).
6.
M. A.
Kanso
,
A. J.
Giacomin
, and
C.
Saengow
, “
Large-amplitude oscillatory shear flow loops for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
5
),
053102
(
2020
).
7.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Diblock copolymer architecture and complex viscosity
,”
Int. J. Mod. Phys. B
34
,
2040110
(
2020
).
8.
M. A.
Kanso
and
A. J.
Giacomin
, “
Polymer branching and first normal stress differences in small-amplitude oscillatory shear flow
,”
Can. J. Chem. Eng.
98
(
7
),
1444
1455
(
2020
).
9.
K.
El Haddad
,
C.
Aumnate
,
C.
Saengow
,
M. A.
Kanso
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Complex viscosity of graphene suspensions
,”
Phys. Fluids
33
(
9
),
093109
(
2021
).
10.
D.
Singhal
,
M. A.
Kanso
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Complex viscosity of poly[n]catenanes including olympiadanes
,”
Phys. Fluids
34
(
3
),
033112
(
2022
).
11.
M. A.
Kanso
,
M. C.
Pak
,
K.-I.
Kim
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Hydrodynamic interaction and complex viscosity of multi-bead rods
,”
Phys. Fluids
34
(
4
),
043102
(
2022
).
12.
M. A.
Kanso
,
J. H.
Piette
,
J. A.
Hanna
, and
A. J.
Giacomin
, “
Coronavirus rotational diffusivity
,”
Phys. Fluids
32
(
11
),
113101
(
2020
).
13.
M. A.
Kanso
,
V.
Chaurasia
,
E.
Fried
, and
A. J.
Giacomin
, “
Peplomer bulb shape and coronavirus rotational diffusivity
,”
Phys. Fluids
33
(
3
),
033115
(
2021
).
14.
M. A.
Kanso
,
M.
Naime
,
V.
Chaurasia
,
K.
Tontiwattanakul
,
E.
Fried
, and
A. J.
Giacomin
, “
Coronavirus pleomorphism
,”
Phys. Fluids
34
(
6
),
063101
(
2022
).
15.
O.
Hassager
, “
Kinetic theory and rheology of bead-rod models for macromolecular solutions. II. Linear unsteady flow properties
,”
J. Chem. Phys.
60
(
10
),
4001
4008
(
1974
).
16.
O.
Hassager
, “
On the kinetic theory and rheology of multibead models for macromolecules
,” Ph.D. thesis (
Chemical Engineering Department, University of Wisconsin
,
USA
,
1973
).
17.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
John Wiley & Sons, Inc
.,
New York
,
1987
), Vol.
2
.
18.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol.
1
.
19.
ChemDraw
, Chem3D (v21.0.0) (
PerkinElmer Informatics
,
Waltham
).
20.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
1
.
21.
H. G.
Campbell
,
Matrices with Applications
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1968
).
22.
F. W.
Billmeyer
, Jr.
,
Textbook of Polymer Science
, 2nd ed. (
Wiley
,
New York
,
1971
).
23.
M. A.
Kanso
,
M. C.
Pak
,
R.
Chakraborty
,
K.-I.
Kim
, and
A. J.
Giacomin
, “
Hydrodynamic interaction within canonical macromolecular structures
,”
Phys. Fluids
34
,
083109
(
2022
).
24.
M. C.
Pak
,
K.-I.
Kim
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
General rigid bead-rod theory with hydrodynamic interaction for polymer viscoelasticity
,”
Phys. Fluids
34
(
2
),
023106
(
2022
).
25.
J. H.
Piette
,
C.
Saengow
, and
A. J.
Giacomin
, “
Hydrodynamic interaction for rigid dumbbell suspensions in steady shear flow
,”
Phys. Fluids
31
(
5
),
053103
(
2019
).
26.
R. B.
Bird
,
H. R.
Warner
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,”
Fortschr. Hochpolym.-Forsch.
8
,
1
90
(
1971
).
27.
R. B.
Bird
and
A. J.
Giacomin
, “
Who conceived the complex viscosity?
,”
Rheol. Acta
51
(
6
),
481
486
(
2012
).
28.
A. J.
Giacomin
and
R. B.
Bird
, “
Erratum: Official nomenclature of the society of rheology:
η,”
J. Rheol.
55
(
4
),
921
923
(
2011
).
29.
R. B.
Bird
,
O.
Hassager
,
R. C.
Armstrong
, and
C. F.
Curtiss
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol.
2
.
30.
A. J.
Giacomin
and
M. A.
Kanso
, “
General rigid bead-rod macromolecular theory
,” in
Recent Advances in Rheology: Theory, Biorheology, Suspension and Interfacial Rheology
, 1st ed., edited by
D. D.
Kee
and
A.
Ramachandran
(
AIP Publishing
,
Melville
,
2022
), Chap. 2.
31.
Z. C.
Yan
,
M. D.
Hossain
,
M. J.
Monteiro
, and
D.
Vlassopoulos
, “
Viscoelastic properties of unentangled multicyclic polystyrene
,”
Polymers
10
(
9
),
973
(
2018
).
You do not currently have access to this content.