Relative permeability is commonly used to model immiscible fluid flow through porous materials. In this work, we derive the relative permeability relationship from conservation of energy, assuming that the system to be non-ergodic at large length scales and relying on averaging in both space and time to homogenize the behavior. Explicit criteria are obtained to define stationary conditions: (1) there can be no net change for extensive measures of the system state over the time averaging interval; (2) the net energy inputs into the system are zero, meaning that the net rate of work done on the system must balance with the heat removed; and (3) there is no net work performed due to the contribution of internal energy fluctuations. Results are then evaluated based on direct numerical simulation. Dynamic connectivity is observed during steady-state flow, which is quantitatively assessed based the Euler characteristic. We show that even during steady-state flow at low capillary number (Ca1×105), typical flow processes will explore multiple connectivity states. The residence time for each connectivity state is captured based on the time-and-space average. The distribution for energy fluctuations is shown to be multi-modal and non-Gaussian when terms are considered independently. However, we demonstrate that their sum is zero. Given an appropriate choice of the thermodynamic driving force, we show that the conventional relative permeability relationship is sufficient to model the energy dissipation in systems with complex pore-scale dynamics that routinely alter the structure of fluid connected pathways.

1.
S.
Berg
,
E.
Unsal
, and
H.
Dijk
, “
Sensitivity and uncertainty analysis for parameterization of multiphase flow models
,”
Transp. Porous Media
140
,
27
57
(
2021
).
2.
M.
Muskat
and
M. W.
Meres
, “
The flow of heterogeneous fluids through porous media
,”
Physics
7
,
346
363
(
1936
).
3.
R.
Wyckoff
and
H.
Botset
, “
The flow of gas–liquid mixtures through unconsolidated sands
,”
Physics
7
,
325
345
(
1936
).
4.
M.
Leverett
 et al, “
Capillary behavior in porous solids
,”
Trans. AIME
142
,
152
169
(
1941
).
5.
S. E.
Buckley
and
M.
Leverett
 et al, “
Mechanism of fluid displacement in sands
,”
Trans. AIME
146
,
107
116
(
1942
).
6.
S.
Whitaker
, “
Flow in porous media. I. A theoretical derivation of Darcy's law
,”
Transp. Porous Media
1
,
3
25
(
1986
).
7.
S.
Whitaker
, “
Flow in porous media. II. The governing equations for immiscible, two-phase flow
,”
Transp. Porous Media
1
,
105
125
(
1986
).
8.
W.
Rose
, “
Measuring transport coefficients necessary for the description of coupled two-phase flow of immiscible fluids in porous media
,”
Transp. Porous Media
3
,
163
171
(
1988
).
9.
E. G.
Flekkøy
and
S. R.
Pride
, “
Reciprocity and cross coupling of two-phase flow in porous media from Onsager theory
,”
Phys. Rev. E
60
,
4130
(
1999
).
10.
M. J.
Blunt
,
Multiphase Flow in Permeable Media: A Pore-Scale Perspective
(
Cambridge University Press
,
2017
).
11.
A. T.
Corey
, “
The interrelation between gas and oil relative permeabilities
,”
Prod. Mon.
1954
,
38
41
.
12.
R. H.
Brooks
and
A. T.
Corey
, “
Hydraulic properties of porous media
,” Ph.D. thesis (
Colorado State University
,
1964
).
13.
C. S.
Land
 et al, “
Calculation of imbibition relative permeability for two-and three-phase flow from rock properties
,”
Soc. Pet. Eng. J.
8
,
149
156
(
1968
).
14.
H.
Stone
 et al, “
Probability model for estimating three-phase relative permeability
,”
J. Pet. Technol.
22
,
214
218
(
1970
).
15.
R.
Fulcher
, Jr.
,
T.
Ertekin
,
C.
Stahl
 et al, “
Effect of capillary number and its constituents on two-phase relative permeability curves
,”
J. Pet. Technol.
37
,
249
260
(
1985
).
16.
D.
Avraam
and
A.
Payatakes
, “
Flow regimes and relative permeabilities during steady-state two-phase flow in porous media
,”
J. Fluid Mech.
293
,
207
236
(
1995
).
17.
H.
Li
,
C.
Pan
, and
C. T.
Miller
, “
Pore-scale investigation of viscous coupling effects for two-phase flow in porous media
,”
Phys. Rev. E
72
,
026705
(
2005
).
18.
T.
Ramstad
,
N.
Idowu
,
C.
Nardi
, and
P.-E.
Øren
, “
Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks
,”
Transp. Porous Media
94
,
487
504
(
2012
).
19.
M.
Fan
,
J.
McClure
,
Y.
Han
,
Z.
Li
, and
C.
Chen
, “
Interaction between proppant compaction and single-/multiphase flows in a hydraulic fracture
,”
SPE J.
23
,
1290
1303
(
2018
).
20.
M.
Fan
,
L. E.
Dalton
,
J.
McClure
,
N.
Ripepi
,
E.
Westman
,
D.
Crandall
, and
C.
Chen
, “
Comprehensive study of the interactions between the critical dimensionless numbers associated with multiphase flow in 3D porous media
,”
Fuel
252
,
522
533
(
2019
).
21.
W. G.
Anderson
, “
Wettability literature survey part 5: The effects of wettability on relative permeability
,”
J. Pet. Technol.
39
,
1453
1468
(
1987
).
22.
M. J.
Blunt
, “
Flow in porous media–pore-network models and multiphase flow
,”
Curr. Opin. Colloid Interface Sci.
6
,
197
207
(
2001
).
23.
P.-E.
Øren
and
S.
Bakke
, “
Reconstruction of berea sandstone and pore-scale modelling of wettability effects
,”
J. Pet. Sci. Eng.
39
,
177
199
(
2003
).
24.
P. H.
Valvatne
and
M. J.
Blunt
, “
Predictive pore-scale modeling of two-phase flow in mixed wet media
,”
Water Resour. Res.
40
,
W07406
, (
2004
).
25.
E. J.
Spiteri
,
R.
Juanes
,
M. J.
Blunt
,
F. M.
Orr
 et al, “
A new model of trapping and relative permeability hysteresis for all wettability characteristics
,”
SPE J.
13
,
277
288
(
2008
).
26.
B.
Zhao
,
C. W.
MacMinn
, and
R.
Juanes
, “
Wettability control on multiphase flow in patterned microfluidics
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
10251
10256
(
2016
).
27.
M.
Fan
,
J. E.
McClure
,
R. T.
Armstrong
,
M.
Shabaninejad
,
L. E.
Dalton
,
D.
Crandall
, and
C.
Chen
, “
Influence of clay wettability alteration on relative permeability
,”
Geophys. Res. Lett.
47
,
e2020GL088545
, (
2020
).
28.
R.
Guo
,
L. E.
Dalton
,
M.
Fan
,
J.
McClure
,
L.
Zeng
,
D.
Crandall
, and
C.
Chen
, “
The role of the spatial heterogeneity and correlation length of surface wettability on two-phase flow in a CO2-water-rock system
,”
Adv. Water Resour.
146
,
103763
(
2020
).
29.
A. L.
Herring
,
E. J.
Harper
,
L.
Andersson
,
A.
Sheppard
,
B. K.
Bay
, and
D.
Wildenschild
, “
Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic CO2 sequestration
,”
Adv. Water Resour.
62
,
47
58
(
2013
).
30.
R. T.
Armstrong
,
J. E.
McClure
,
M. A.
Berrill
,
M.
Rücker
,
S.
Schlüter
, and
S.
Berg
, “
Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow
,”
Phys. Rev. E
94
,
043113
(
2016
).
31.
S.
Schlüter
,
S.
Berg
,
M.
Rücker
,
R.
Armstrong
,
H.-J.
Vogel
,
R.
Hilfer
, and
D.
Wildenschild
, “
Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media
,”
Water Resour. Res.
52
,
2194
2205
, (
2016
).
32.
J. E.
McClure
,
R. T.
Armstrong
,
M. A.
Berrill
,
S.
Schlüter
,
S.
Berg
,
W. G.
Gray
, and
C. T.
Miller
, “
Geometric state function for two-fluid flow in porous media
,”
Phys. Rev. Fluids
3
,
084306
(
2018
).
33.
R. T.
Armstrong
,
J. E.
McClure
,
V.
Robins
,
Z.
Liu
,
C. H.
Arns
,
S.
Schlüter
, and
S.
Berg
, “
Porous media characterization using Minkowski functionals: Theories, applications and future directions
,”
Transp. Porous Media
130
,
305
335
(
2019
).
34.
C.
Sun
,
J. E.
McClure
,
P.
Mostaghimi
,
A. L.
Herring
,
D. E.
Meisenheimer
,
D.
Wildenschild
,
S.
Berg
, and
R. T.
Armstrong
, “
Characterization of wetting using topological principles
,”
J. Colloid Interface Sci.
578
,
106
115
(
2020
).
35.
C. A.
Reynolds
,
H.
Menke
,
M.
Andrew
,
M. J.
Blunt
, and
S.
Krevor
, “
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
8187
8192
(
2017
).
36.
C.
Spurin
,
T.
Bultreys
,
B.
Bijeljic
,
M. J.
Blunt
, and
S.
Krevor
, “
Intermittent fluid connectivity during two-phase flow in a heterogeneous carbonate rock
,”
Phys. Rev. E
100
,
043103
(
2019
).
37.
T.
Geffen
,
W.
Owens
,
D.
Parrish
,
R.
Morse
 et al, “
Experimental investigation of factors affecting laboratory relative permeability measurements
,”
J. Pet. Technol.
3
,
99
110
(
1951
).
38.
J.
Osoba
,
J.
Richardson
,
J.
Kerver
,
J.
Hafford
,
P.
Blair
 et al, “
Laboratory measurements of relative permeability
,”
J. Pet. Technol.
3
,
47
56
(
1951
).
39.
J.
Richardson
,
J.
Kerver
,
J.
Hafford
,
J.
Osoba
 et al, “
Laboratory determination of relative permeability
,”
J. Pet. Technol.
4
,
187
196
(
1952
).
40.
M.
Honarpour
and
S.
Mahmood
 et al, “
Relative-permeability measurements: An overview
,”
J. Pet. Technol.
40
,
963
966
(
1988
).
41.
B.
Bennion
and
S.
Bachu
 et al, “
Drainage and imbibition relative permeability relationships for supercritical CO2/brine and H2S/brine systems in intergranular sandstone, carbonate, shale, and anhydrite rocks
,”
SPE Reservoir Eval. Eng.
11
,
487
496
(
2008
).
42.
S. C.
Krevor
,
R.
Pini
,
L.
Zuo
, and
S. M.
Benson
, “
Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions
,”
Water Resour. Res.
48
,
W02532
, (
2012
).
43.
J.
Bear
and
Y.
Bachmat
,
Introduction to Modeling of Transport Phenomena in Porous Media
(
Springer Science & Business Media
,
2012
), Vol.
4
.
44.
P.
Persoff
and
K.
Pruess
, “
Two-phase flow visualization and relative permeability measurement in natural rough-walled rock fractures
,”
Water Resour. Res.
31
,
1175
1186
, (
1995
).
45.
C.
Reynolds
and
S.
Krevor
, “
Characterizing flow behavior for gas injection: Relative permeability of CO2-brine and N2-water in heterogeneous rocks
,”
Water Resour. Res.
51
,
9464
9489
, (
2015
).
46.
T. G.
Sorop
,
S. K.
Masalmeh
,
B. M.
Suijkerbuijk
,
H. A.
van der Linde
,
H.
Mahani
,
N. J.
Brussee
,
F. A.
Marcelis
,
A.
Coorn
 et al, “
Relative permeability measurements to quantify the low salinity flooding effect at field scale
,” in
Abu Dhabi International Petroleum Exhibition and Conference
(
Society of Petroleum Engineers
,
2015
).
47.
Y.
Gao
,
Q.
Lin
,
B.
Bijeljic
, and
M. J.
Blunt
, “
X-ray microtomography of intermittency in multiphase flow at steady state using a differential imaging method
,”
Water Resour. Res.
53
,
10274
10292
, (
2017
).
48.
Q.
Lin
,
B.
Bijeljic
,
R.
Pini
,
M. J.
Blunt
, and
S.
Krevor
, “
Imaging and measurement of pore-scale interfacial curvature to determine capillary pressure simultaneously with relative permeability
,”
Water Resour. Res.
54
,
7046
7060
, (
2018
).
49.
Y.
Gao
,
A. Q.
Raeini
,
M. J.
Blunt
, and
B.
Bijeljic
, “
Pore occupancy, relative permeability and flow intermittency measurements using x-ray micro-tomography in a complex carbonate
,”
Adv. Water Resour.
129
,
56
69
(
2019
).
50.
Q.
Lin
,
B.
Bijeljic
,
S.
Berg
,
R.
Pini
,
M. J.
Blunt
, and
S.
Krevor
, “
Minimal surfaces in porous media: Pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone
,”
Phys. Rev. E
99
,
063105
(
2019
).
51.
Y.
Wang
and
S. K.
Masalmeh
, “
Obtaining high quality SCAL data: Combining different measurement techniques, saturation monitoring, numerical interpretation and continuous monitoring of experimental data
,” in
E3S Web of Conferences
(
EDP Sciences
,
2019
), Vol.
89
, p.
02007
.
52.
M. B.
Clennell
,
C.
White
,
A.
Giwelli
,
M.
Myers
,
L.
Esteban
,
M.
Cullingford
,
W.
Richardson
,
G.
Ward
,
M.
Waugh
,
S.
Cole
 et al, “
Improved method for complete gas–brine imbibition relative permeability curves
,” in
E3S Web of Conferences
(
EDP Sciences
,
2020
), Vol.
146
, p.
03003
.
53.
Y.
Gao
,
Q.
Lin
,
B.
Bijeljic
, and
M. J.
Blunt
, “
Pore-scale dynamics and the multiphase Darcy law
,”
Phys. Rev. Fluids
5
,
013801
(
2020
).
54.
M.
Rücker
,
A.
Georgiadis
,
R. T.
Armstrong
,
H.
Ott
,
N.
Brussee
,
H.
van der Linde
,
L.
Simon
,
F.
Enzmann
,
M.
Kersten
, and
S.
Berg
, “
The origin of non-thermal fluctuations in multiphase flow in porous media
,”
Front. Water
3
,
45
(
2021
).
55.
S.
Schlüter
,
S.
Berg
,
T.
Li
,
H.-J.
Vogel
, and
D.
Wildenschild
, “
Time scales of relaxation dynamics during transient conditions in two-phase flow
,”
Water Resour. Res.
53
,
4709
4724
, (
2017
).
56.
R.
Palmer
, “
Broken ergodicity
,”
Adv. Phys.
31
,
669
735
(
1982
).
57.
G. D.
Birkhoff
, “
Proof of the Ergodic theorem
,”
Proc. Natl. Acad. Sci. U. S. A.
17
,
656
660
(
1931
).
58.
J. V.
Neumann
, “
Proof of the quasi-Ergodic hypothesis
,”
Proc. Natl. Acad. Sci. U. S. A.
18
,
70
82
(
1932
).
59.
J. E.
McClure
,
S.
Berg
, and
R. T.
Armstrong
, “
Capillary fluctuations and energy dynamics for flow in porous media
,”
Phys. Fluids
33
,
083323
(
2021
).
60.
N. R.
Morrow
, “
Physics and thermodynamics of capillary action in porous media
,”
Ind. Eng. Chem.
62
,
32
56
(
1970
).
61.
R. T.
Armstrong
,
H.
Ott
,
A.
Georgiadis
,
M.
Rücker
,
A.
Schwing
, and
S.
Berg
, “
Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow
,”
Water Resour. Res.
50
,
9162
9176
, (
2014
).
62.
F.
Moebius
and
D.
Or
, “
Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries
,”
J. Colloid Interface Sci.
377
,
406
415
(
2012
).
63.
S.
Berg
,
H.
Ott
,
S. A.
Klapp
,
A.
Schwing
,
R.
Neiteler
,
N.
Brussee
,
A.
Makurat
,
L.
Leu
,
F.
Enzmann
,
J.-O.
Schwarz
 et al, “
Real-time 3d imaging of Haines jumps in porous media flow
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
3755
3759
(
2013
).
64.
M.
Rücker
,
S.
Berg
,
R.
Armstrong
,
A.
Georgiadis
,
H.
Ott
,
A.
Schwing
,
R.
Neiteler
,
N.
Brussee
,
A.
Makurat
,
L.
Leu
 et al, “
From connected pathway flow to ganglion dynamics
,”
Geophys. Res. Lett.
42
,
3888
3894
, (
2015
).
65.
F.
Kalaydjian
, “
A macroscopic description of multiphase flow in porous media involving spacetime evolution of fluid/fluid interface
,”
Transp. Porous Media
2
,
537
552
(
1987
).
66.
J. E.
McClure
,
S.
Berg
, and
R. T.
Armstrong
, “
Thermodynamics of fluctuations based on time-and-space averages
,”
Phys. Rev. E
104
,
035106
(
2021
).
67.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
,
405
426
(
1931
).
68.
A.
Georgiadis
,
S.
Berg
,
A.
Makurat
,
G.
Maitland
, and
H.
Ott
, “
Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition
,”
Phys. Rev. E
88
,
033002
(
2013
).
69.
J.
McClure
,
T.
Ramstad
,
Z.
Li
,
R. T.
Armstrong
, and
S.
Berg
, “
Modeling geometric state for fluids in porous media: Evolution of the Euler characteristic
,”
Transp. Porous Media
133
,
229
250
(
2020
).
70.
R. J.
Jongschaap
and
H. C.
Öttinger
, “
Equilibrium thermodynamics—Callen's postulational approach
,”
J. Non-Newtonian Fluid Mech.
96
,
5
17
(
2001
).
71.
C. F.
Berg
,
P. A.
Slotte
, and
H. H.
Khanamiri
, “
Geometrically derived efficiency of slow immiscible displacement in porous media
,”
Phys. Rev. E
102
,
033113
(
2020
).
72.
I.
Savani
,
D.
Bedeaux
,
S.
Kjelstrup
,
M.
Vassvik
,
S.
Sinha
, and
A.
Hansen
, “
Ensemble distribution for immiscible two-phase flow in porous media
,”
Phys. Rev. E
95
,
023116
(
2017
).
73.
W. G.
Gray
and
C. T.
Miller
, “
Examination of Darcy's law for flow in porous media with variable porosity
,”
Environ. Sci. Technol.
38
,
5895
5901
(
2004
).
74.
W. G.
Gray
and
C. T.
Miller
, “
Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 3. Single-fluid-phase flow
,”
Adv. Water Resour.
29
,
1745
1765
(
2006
).
75.
A. W.
Adamson
and
A. P.
Gast
,
Physical Chemistry of Surfaces
, 6th ed. (
John Wiley and Sons
,
1997
).
76.
A. S.
Jackson
,
C. T.
Miller
, and
W. G.
Gray
, “
Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow
,”
Adv. Water Resour.
32
,
779
795
(
2009
).
77.
D.
Lasseux
and
F. J.
Valdés-Parada
, “
A macroscopic model for immiscible two-phase flow in porous media
,”
J. Fluid Mech.
944
,
A43
(
2022
).
78.
J. E.
McClure
,
Z.
Li
,
M.
Berrill
, and
T.
Ramstad
, “
The LBPM software package for simulating multiphase flow on digital images of porous rocks
,”
Comput. Geosci.
25
,
871
825
(
2021
).
79.
L.
Dalton
, see http://www.digitalrocksportal.org/projects/218 for “
Bentheimer and Nugget Residual Saturation Micro-Computed Tomography Data
,
2019
.
80.
Z.
Li
,
J.
Mcclure
, and
T.
Ramstad
, see http://www.digitalrocksportal.org/projects/326 for “
Bentheimer Sandstone Two-Fluid Flow Simulation Resembling Special Core Analysis Protocol
,”
2020
.
81.
C.
McPhee
,
J.
Reed
, and
I.
Zubizarreta
,
Core Analysis: A Best Practice Guide
(
Elsevier Science
,
2015
).
You do not currently have access to this content.