A large amount of binary fluid mixture in the homogeneous phase near the demixing critical point can include a small spherical droplet of a third fluid-component confined by a sharp interface. Conversely, a droplet consisting of the mixture can be immersed in the third fluid-component. In either of the situations, we assume that the third component attracts one mixture component more than the other via short-range interactions. The adsorption layer, enriched with the preferred component, appears on the mixture side of the interface and can thicken significantly because of large susceptibility. The preferential adsorption affects flows, causing the drag coefficient to deviate. We use the hydrodynamics based on a coarse-grained free-energy functional to calculate the deviation, while neglecting the weak singularity of mixture viscosity. When the mixture lies inside the droplet, the ratio of the deviation changes nonmonotonically as the ratio of the ambient viscosity to the droplet viscosity increases. When the mixture lies outside, the deviation ratio increases with the viscosity ratio and can be considerably larger for a droplet than for a rigid sphere. Then, if a composition gradient is imposed, a force-free droplet undergoes diffusiophoresis, whose mobility can be considerably larger in magnitude than that of a rigid sphere. These results can be utilized in future applications in the droplet microfluidics. We also discuss probable power-law dependences of the drag coefficient and the mobility on the reduced temperature. The suggested power for the mobility is connected with the universal order-parameter profile in the surface critical behavior.

1.
S.
Yabunaka
and
Y.
Fujitani
, “
Drag coefficient of a rigid spherical particle in a near-critical binary fluid mixture, beyond the regime of the Gaussian model
,”
J. Fluid Mech.
886
,
A2
(
2020
).
2.
J. W.
Cahn
, “
Critical point wetting
,”
J. Chem. Phys.
66
,
3667
3672
(
1977
).
3.
D.
Beysens
and
S.
Leibler
, “
Observation of an anomalous adsorption in a critical binary mixture
,”
J. Phys. Lett.
43
,
133
136
(
1982
).
4.
D.
Beysens
and
D.
Estève
, “
Adsorption phenomena at the surface of silica spheres in a binary liquid mixture
,”
Phys. Rev. Lett.
54
,
2123
2126
(
1985
).
5.
M. N.
Binder
, “
Critical behavior at surfaces
,” in
Phase Transitions and Critical Phenomena VIII
, edited by
C.
Domb
and
J.
Lebowitz
(
Academic Press
,
London
,
1983
).
6.
R.
Holyst
and
A.
Poniewierski
, “
Wetting on a spherical surface
,”
Phys. Rev. B
36
,
5628
5630
(
1987
).
7.
D.
Beysens
, “
Brownian motion in strongly fluctuating liquid
,”
Thermodyn. Interface Fluid Mech.
3
,
1
8
(
2019
).
8.
Y.
Fujitani
, “
Suppression of viscosity enhancement around a Brownian particle in a near-critical binary fluid mixture
,”
J. Fluid Mech.
907
,
A21
(
2021
).
9.
G. G.
Stokes
, “
On the effect of the internal friction of fluids on the motion of pendulums
,”
Trans. Cambridge Philos. Soc.
9
,
8
106
(
1851
).
10.
R.
Okamoto
,
Y.
Fujitani
, and
S.
Komura
, “
Drag coefficient of a rigid spherical particle in a near-critical binary fluid mixture
,”
J. Phys. Soc. Jpn.
82
,
084003
(
2013
).
11.
S.
Yabunaka
,
R.
Okamoto
, and
A.
Onuki
, “
Hydrodynamics in bridging and aggregation of two colloidal particles in a near-critical binary mixture
,”
Soft Matter
11
,
5738
(
2015
).
12.
Y.
Fujitani
, “
Undulation amplitude of a fluid membrane in a near-critical binary fluid mixture calculated beyond the Gaussian model supposing weak preferential attraction
,”
J. Phys. Soc. Jpn.
86
,
044602
(
2017
).
13.
Y.
Fujitani
, “
Osmotic effects on dynamics of a colloidal rigid sphere in a near-critical binary fluid mixture
,”
J. Phys. Soc. Jpn.
87
,
084602
(
2018
).
14.
A.
Furukawa
,
A.
Gambassi
,
S.
Dietrich
, and
H.
Tanaka
, “
Nonequilibrium critical Casimir effect in binary fluids
,”
Phys. Rev. Lett.
111
,
055701
(
2013
).
15.
S. P.
Lee
, “
Evidence for the ‘correlated layer’ effect on the effective viscosity from Brownian motion in a ternary liquid mixture
,”
Phys. Rev. Lett.
36
,
1319
1322
(
1976
).
16.
R. A.
Omari
,
C. A.
Grabowski
, and
A.
Mukhopadhyay
, “
Effect of surface curvature on critical adsorption
,”
Phys. Rev. Lett.
103
,
225705
(
2009
).
17.
V. G.
Levich
,
Physicochemical Hydrodynamics
(
Prentice Hall
,
New Jersey
,
1962
), Chap. 8.
18.
J. M.
Rallison
, “
The deformation of small viscous drop and bubbles in shear flows
,”
Ann. Rev. Fluid Mech.
16
,
45
66
(
1984
).
19.
Z. G.
Feng
and
E. E.
Michaelides
, “
Drag coefficient of viscous spheres at intermediate and high Reynolds numbers
,”
J. Fluids Eng.
123
,
841
849
(
2001
).
20.
E.
Loth
, “
Quasi-steady shape and drag of deformable bubbles and drops
,”
Int. J. Multiphase Flow
34
,
523
546
(
2008
).
21.
J. S.
Hadamard
, “
Mouvement permanent lent d'une sphère liquide et visqueuse dans un liquide visqueux
,”
C. R. Acad. Sci. Paris
152
,
1735
1738
(
1911
).
22.
W.
Rybczynski
, “
Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium
,”
Bull. Acad. Sci. Cracow, Ser. A
1911
,
40
46
.
23.
L.
Shang
,
Y.
Cheng
, and
Y.
Zhao
, “
Emerging droplet microfluidics
,”
Chem. Rev.
117
,
7964
8040
(
2017
).
24.
A.
Suea-Ngam
,
P. D.
Howes
,
M.
Srisa-Art
, and
A. J.
deMello
, “
Droplet microfluidics: From proof-of-concept to real world utility
,”
Chem. Commun.
55
,
9895
9903
(
2019
).
25.
Y.
Ding
,
P. D.
Howes
, and
A. J.
deMello
, “
Recent advances in droplet microfluidics
,”
Anal. Chem.
92
,
132
149
(
2020
).
26.
S.
Sohrabi
,
N.
Kassir
, and
M. K.
Moraveji
, “
Droplet microfluidics: Fundamentals and its advanced applications
,”
RSC Adv.
10
,
27560
27574
(
2020
).
27.
R.
Okamoto
and
A.
Onuki
, “
Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: Renormalized local functional theory
,”
J. Chem. Phys.
136
,
114704
(
2012
).
28.
S.
Shin
, “
Diffusiophoretic separation of colloids in microfluidic flows
,”
Phys. Fluids
32
,
101302
(
2020
).
29.
D.
Velegol
,
A.
Garg
,
R.
Gusha
,
A.
Kar
, and
M.
Kumar
, “
Origins of concentration gradients for diffusiophoresis
,”
Soft Matter
12
,
4686
4703
(
2016
).
30.
B. V.
Derjaguin
,
S. S.
Dukhin
, and
V. V.
Koptelova
, “
Capillary osmosis through porous partitions and properties of boundary layers of solutions
,”
J. Colloid Interface Sci.
38
,
584
595
(
1972
).
31.
D. C.
Prieve
and
R.
Roman
, “
Diffusiophoresis of a rigid sphere through a viscous electrolyte solution
,”
J. Chem. Soc., Faraday Trans. 2
83
,
1287
1306
(
1987
).
32.
P. O.
Staffeld
and
J. A.
Quinn
, “
Diffusion-induced banding of colloid particles via diffusiophoresis: 2. Non-electrolyte
,”
J. Colloid Interface Sci.
130
,
88
100
(
1989
).
33.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Ann. Rev. Fluid Mech.
21
,
61
99
(
1989
).
34.
F.
Yang
,
S.
Shin
, and
H. A.
Stone
, “
Diffusiophoresis of a charged drop
,”
J. Fluid Mech.
852
,
37
59
(
2018
).
35.
Y.
Wu
,
E.
Jian
,
L.
Fan
,
J.
Tseng
,
R.
Wan
, and
E.
Lee
, “
Diffusiophoresis of a highly charged dielectric fluid droplet
,”
Phys. Fluids
33
,
122005
(
2021
).
36.
L.
Fan
,
Y.
Wu
,
E.
Jian
,
J.
Tseng
,
R.
Wan
,
A.
Tseng
,
J.
Lin
, and
E.
Lee
, “
Diffusiophoresis of a highly charged dielectric fluid droplet induced by diffusion potential
,”
Phys. Fluids
34
,
042003
(
2022
).
37.
L.
Fan
and
E.
Lee
, “
Diffusiophoresis of a highly charged conducting fluid droplet
,”
Phys. Fluids
34
,
062013
(
2022
).
38.
Y.
Fujitani
, “
Diffusiophoresis in a Near-critical Binary Fluid Mixture
,”
Phys. Fluids
34
,
041701
(
2022
).
39.
S. R.
de Groot
and
G.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover
,
New York
,
1984
), Chap. XV-3.
40.
P. G.
Wolynes
, “
Osmotic effects near the critical point
,”
J. Phys. Chem.
80
,
1570
1572
(
1976
).
41.
S.
Yabunaka
and
Y.
Fujitani
, “
Isothermal transport of a near-critical binary fluid mixture through a capillary tube with the preferential adsorption
,”
Phys. Fluids
34
,
052012
(
2022
).
42.
S.
Yabunaka
,
R.
Okamoto
, and
A.
Onuki
, “
Phase separation in a binary mixture confined between symmetric parallel plates: Capillary condensation transition near the bulk critical point
,”
Phys. Rev. E
87
,
032405
(
2013
).
43.
S.
Yabunaka
and
A.
Onuki
, “
Critical adsorption profiles around a sphere and a cylinder in a fluid at criticality: Local functional theory
,”
Phys. Rev. E
96
,
032127
(
2017
).
44.
A.
Pelisetto
and
E.
Vicari
, “
Critical phenomena and renormalization-group theory
,”
Phys. Rep.
368
,
549
727
(
2002
).
45.
H. W.
Diehl
, “
The theory of boundary critical phenomena
,”
Int. J. Mod. Phys. B
11
,
3503
3523
(
1997
).
46.
H. W.
Diehl
and
H. K.
Janssen
, “
Boundary conditions for the field theory of dynamic critical behavior in semi-infinite systems with conserved order parameter
,”
Phys. Rev. A
45
,
7145
7155
(
1992
).
47.
P. C.
Hohenberg
and
B. I.
Halperin
, “
Theory of dynamic critical phenomena
,”
Rev. Mod. Phys.
49
,
435
479
(
1977
).
48.
A.
Onuki
,
Phase Transition Dynamics
(
Cambridge University Press
,
Cambridge
,
2002
), Chap. 6.
49.
R. G.
Barrera
,
G. A.
Estévez
, and
J.
Giraldo
, “
Vector spherical harmonics and their application to magnetostatics
,”
Eur. J. Phys.
6
,
287
294
(
1985
).
50.
Y.
Fujitani
, “
Connection of fields across the interface in the fluid particle dynamics method for colloidal dispersion
,”
J. Phys. Soc. Jpn.
76
,
064401
(
2007
).
51.
Y.
Fujitani
, “
Effective viscosity of a near-critical binary fluid mixture with colloidal particles dispersed dilutely under weak shear
,”
J. Phys. Soc. Jpn.
83
,
084401
(
2014
).
52.
Y.
Fujitani
, “
Fluctuation amplitude of a trapped rigid sphere immersed in a near-critical binary fluid mixture within the regime of the Gaussian model
,”
J. Phys. Soc. Jpn.
85
,
044401
(
2016
).
53.
Y.
Fujitani
, “
Relaxation rate of the shape fluctuation of a fluid membrane immersed in a near-critical binary fluid mixture
,”
Eur. Phys. J. E
39
,
31
(
2016
).
54.
H. A.
Lorentz
, “
A general theorem concerning the motion of a viscous fluid and a few consequences derived from it
,”
Versl. Kon. Akad. Wetensch. Amsterdam
5
,
168
175
(
1896
).
55.
A.
Hanke
and
S.
Dietrich
, “
Critical adsorption on curved objects
,”
Phys. Rev. E
59
,
5081
5100
(
1999
).
56.
R.
Okamoto
and
A.
Onuki
, “
Attractive interaction and bridging transition between neutral colloidal particles due to preferential adsorption in a near-critical binary mixture
,”
Phys. Rev. E
88
,
022309
(
2013
).
57.
M. E.
Fisher
and
P. G.
de Gennes
, “
Phénomènes aux parois dans un mélange binaire critique
,”
C. R. Acad. Sci. Paris B
287
,
207
(
1978
).
58.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Elsevier
,
Amsterdam
,
2011
), Chap. 17.
59.
W.
Sutherland
, “
LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin
,”
Philos. Mag. J. Sci.
9
,
781
785
(
1905
).
60.
A.
Einstein
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,”
Ann. Phys.
322
,
549
560
(
1905
).
61.
D.
Bedeaux
and
P.
Mazur
, “
Brownian motion and fluctuating hydrodynamics
,”
Physica
76
,
247
258
(
1974
).
62.
P.
Keblinski
and
J.
Thomin
, “
Hydrodynamic field around a Brownian particle
,”
Phys. Rev. E
73
,
010502(R
(
2006
).
63.
Y.
Kaneda
, “
Brownian motion of an almost spherical drop of viscous fluid and fluctuating hydrodynamics
,”
Physica A
101
,
423
430
(
1980
).
64.
M.
Grimm
,
T.
Franosch
, and
S.
Jeney
, “
High-resolution detection of Brownian motion for quantitative optical tweezers experiments
,”
Phys. Rev. E
86
,
021912
(
2012
).
65.
H.
Tani
and
Y.
Fujitani
, “
Drag coefficient of a circular inclusion in a near-critical binary fluid membrane
,”
J. Phys. Soc. Jpn.
87
,
104601
(
2018
).
66.
B. A.
Camley
and
F. L. H.
Brown
, “
Fluctuating hydrodynamics of multicomponent membranes with embedded proteins
,”
J. Chem. Phys.
141
,
075103
(
2014
).
67.
K.
Kawasaki
, “
Kinetic equations and time correlation functions of critical fluctuations
,”
Ann. Phys.
61
,
1
56
(
1970
).
68.
J. V.
Sengers
, “
Transport properties near critical points
,”
Int. J. Thermophys.
6
,
203
232
(
1985
).
69.
T.
Ohta
, “
Selfconsistent calculation of dynamic critical exponents for classical liquid
,”
Prog. Theor. Phys.
54
,
1566
1568
(
1975
).
70.
T.
Ohta
and
K.
Kawasaki
, “
Mode coupling theory of dynamic critical phenomena for classical liquids. I: Dynamic critical exponents
,”
Prog. Theor. Phys.
55
,
1384
1395
(
1976
).
71.
T.
Ohta
, “
Multiplicative renormalization of the anomalous shear viscosity in classical liquids
,”
J. Phys. C: Solid State Phys.
10
,
791
793
(
1977
).
72.
E. D.
Siggia
,
P. C.
Hohenberg
, and
B. I.
Halperin
, “
Renormalization-group treatment of the critical dynamics of the binary-fluid and gas-liquid transitions
,”
Phys. Rev. B
13
,
2110
2123
(
1976
).
73.
R. F.
Berg
and
M. R.
Moldover
, “
Critical exponent for the viscosity of four binary liquids
,”
J. Chem. Phys.
89
,
3694
3704
(
1988
).
74.
R. F.
Berg
and
M. R.
Moldover
, “
Critical exponent for viscosity
,”
Phys. Rev. A
42
,
7183
7187
(
1990
).
75.
A.
Onuki
and
K.
Kawasaki
, “
Nonequilibrium steady state of critical fluids under shear flow: A renormalization group approach
,”
Ann. Phys.
121
,
456
528
(
1979
).
76.
Y.
Fujitani
, “
Drag coefficient of a spherical droplet immersed in a near-critical binary fluid mixture
,”
J. Phys. Soc. Jpn.
83
,
024401
(
2014
);
Y.
Fujitani
,Erratum
J. Phys. Soc. Jpn.
83
,
108001
(
2014
).
77.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics
(
Dover
,
New York
,
2005
), Chaps. 2 and 3.
78.
P.
Mazur
and
D.
Bedeaux
, “
A generalization of Faxén's theorem to nonsteady motion of a sphere though an incompressible fluid in arbitrary flow
,”
Physica
76
,
235
246
(
1974
).
79.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers
(
Springer
,
New York
,
1999
), Chap. 8.2.
You do not currently have access to this content.