Ice accretion on wind turbine blades and wings changes the effective shape of the airfoil and considerably deteriorates the aerodynamic performance. However, the unsteady performance of iced airfoil is often difficult to predict. In this study, the unsteady aerodynamic performance of iced airfoil is simulated under different pitching amplitudes and reduced frequencies. In order to efficiently predict aerodynamic performance under icing conditions, a multi-fidelity reduced-order model based on multi-task learning is proposed. The model is implemented using lift and moment coefficient of clean airfoil as low-fidelity data. Through using few aerodynamic data from iced airfoils as high-fidelity data, the model can achieve aerodynamic prediction for different ice shapes and pitching motions. The results indicate that, compared with single-fidelity and single-task modeling, the proposed model can achieve better accuracy and generalization capability. At the same time, the model can be generalized to different ice shapes, which can effectively improve the unsteady prediction efficiency.

1.
S. J.
Stebbins
,
E.
Loth
,
A. P.
Broeren
, and
M.
Potapczuk
, “
Review of computational methods for aerodynamic analysis of iced lifting surfaces
,”
Prog. Aerosp. Sci.
111
,
100583
(
2019
).
2.
H.
Li
,
Y.
Zhang
, and
H.
Chen
, “
Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model
,”
AIAA J.
58
(
9
),
3863
3876
(
2020
).
3.
X.
Meng
,
H.
Hu
,
C.
Li
,
A. A.
Abbasi
,
J.
Cai
, and
H.
Hu
, “
Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing
,”
Phys. Fluids
31
(
3
),
037103
(
2019
).
4.
A.
Sundaresan
,
S.
Arunvinthan
,
A. A.
Pasha
, and
S. N.
Pillai
, “
Effect of ice accretion on the aerodynamic characteristics of wind turbine blades
,”
Wind Struct.
32
(
3
),
205
217
(
2021
).
5.
B.
Wei
,
Y.
Wu
,
H.
Liang
,
J.
Chen
,
G.
Zhao
,
M.
Tian
, and
H.
Xu
, “
Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer
,”
Phys. Fluids
31
(
9
),
091701
(
2019
).
6.
K.
Zhang
and
H.
Hu
, “
An experimental study on the transient runback characteristics of wind-driven film/rivulet flows
,”
Phys. Fluids
33
(
11
),
112104
(
2021
).
7.
L.
Prince Raj
,
J. W.
Lee
, and
R. S.
Myong
, “
Ice accretion and aerodynamic effects on a multi-element airfoil under SLD icing conditions
,”
Aerosp. Sci. Technol.
85
,
320
333
(
2019
).
8.
O.
Yirtici
,
K.
Cengiz
,
S.
Ozgen
, and
I. H.
Tuncer
, “
Aerodynamic validation studies on the performance analysis of iced wind turbine blades
,”
Comput. Fluids
192
,
104271
(
2019
).
9.
A.
Ebrahimi
,
M.
Hajipour
, and
H.
Hasheminasab
, “
Experimental investigation on the aerodynamic performance of NLF-0414 iced-airfoil
,”
J. Appl. Fluid Mech.
9
(
2
),
587
592
(
2016
).
10.
P. H.
Hoang
,
T.
Maeda
,
Y.
Kamada
,
T.
Tada
,
M.
Hanamura
,
N.
Goshima
,
K.
Iwai
,
A.
Fujiwara
, and
M.
Hosomi
, “
Effect of icing airfoil on aerodynamic performance of horizontal axis wind turbine
,”
J. Energy Resour. Technol.
144
(
1
),
011303
(
2022
).
11.
S.
Uranai
,
K.
Fukudome
,
H.
Mamori
,
N.
Fukushima
, and
M.
Yamamoto
, “
Numerical simulation of the anti-icing performance of electric heaters for icing on the NACA 0012 airfoil
,”
Aerospace
7
(
9
),
123
(
2020
).
12.
M. K.
Vinnes
and
R. J.
Hearst
, “
Aerodynamics of an airfoil with leading-edge icing
,”
Wind Energy
24
(
8
),
795
811
(
2021
).
13.
H.
Eivazi
,
H.
Veisi
,
M. H.
Naderi
, and
V.
Esfahanian
, “
Deep neural networks for nonlinear model order reduction of unsteady flows
,”
Phys. Fluids
32
(
10
),
105104
(
2020
).
14.
S.
Pawar
,
S. E.
Ahmed
,
O.
San
, and
A.
Rasheed
, “
Data-driven recovery of hidden physics in reduced order modeling of fluid flows
,”
Phys. Fluids
32
(
3
),
036602
(
2020
).
15.
J.
Kou
and
W.
Zhang
, “
Data-driven modeling for unsteady aerodynamics and aeroelasticity
,”
Prog. Aerosp. Sci.
125
,
100725
(
2021
).
16.
S.
Stebbins
,
E.
Loth
,
A.
Broeren
,
M.
Potapczuk
, and
C.
Porter
, “
Aerodynamics of a common research model wing with leading-edge ice shape
,”
J. Aircr.
58
(
4
),
894
906
(
2021
).
17.
L. T.
Contreras Montoya
,
S.
Lain
, and
A.
Ilinca
, “
A review on the estimation of power loss due to icing in wind turbines
,”
Energies
15
(
3
),
1083
(
2022
).
18.
M.
Tatar
, “
Global nonlinear aerodynamic reduced-order modeling and parameter estimation by radial basis functions
,”
J. Aerosp. Eng.
34
(
6
),
04021076
(
2021
).
19.
J. G.
Holierhoek
,
J. B.
De Vaal
,
A. H.
Van Zuijlen
, and
H.
Bijl
, “
Comparing different dynamic stall models
,”
Wind Energy
16
(
1
),
139
158
(
2013
).
20.
R.
Huang
,
H.
Liu
,
Z.
Yang
,
Y.
Zhao
, and
H.
Hu
, “
Nonlinear reduced-order models for transonic aeroelastic and aeroservoelastic problems
,”
AIAA J.
56
(
9
),
3718
3731
(
2018
).
21.
W.
Zhang
and
Z.
Ye
, “
Reduced-order-model-based flutter analysis at high angle of attack
,”
J. Aircr.
44
(
6
),
2086
2089
(
2007
).
22.
P.
Wu
,
S.
Gong
,
K.
Pan
,
F.
Qiu
,
W.
Feng
, and
C.
Pain
, “
Reduced order model using convolutional auto-encoder with self-attention
,”
Phys. Fluids
33
(
7
),
077107
(
2021
).
23.
X.
Wang
,
J.
Kou
, and
W.
Zhang
, “
Unsteady aerodynamic modeling based on fuzzy scalar radial basis function neural networks
,”
Proc. Inst. Mech. Eng., Part G
233
(
14
),
5107
5121
(
2019
).
24.
M.
Tatar
and
M. H.
Sabour
, “
Reduced-order modeling of dynamic stall using neuro-fuzzy inference system and orthogonal functions
,”
Phys. Fluids
32
(
4
),
045101
(
2020
).
25.
K.
Li
,
J.
Kou
, and
W.
Zhang
, “
Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers
,”
Nonlinear Dyn.
96
(
3
),
2157
2177
(
2019
).
26.
M.
Winter
and
C.
Breitsamter
, “
Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions
,”
AIAA J.
54
(
9
),
2705
2720
(
2016
).
27.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
28.
M.
Xu
,
S.
Song
,
X.
Sun
, and
W.
Zhang
, “
A convolutional strategy on unstructured mesh for the adjoint vector modeling
,”
Phys. Fluids
33
(
3
),
036115
(
2021
).
29.
M. P.
Brenner
,
J. D.
Eldredge
, and
J. B.
Freund
, “
Perspective on machine learning for advancing fluid mechanics
,”
Phys. Rev. Fluids
4
(
10
),
100501
(
2019
).
30.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Assessment of supervised machine learning methods for fluid flows
,”
Theor. Comput. Fluid Dyn.
34
(
4
),
497
519
(
2020
).
31.
J.
Kou
and
W.
Zhang
, “
Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils
,”
Appl. Math. Modell.
76
,
832
855
(
2019
).
32.
D.
Singh
,
A. F.
Antoniadis
,
P.
Tsoutsanis
,
H.-S.
Shin
,
A.
Tsourdos
,
S.
Mathekga
, and
K. W.
Jenkins
, “
A multi-fidelity approach for aerodynamic performance computations of formation flight
,”
Aerospace
5
(
2
),
66
(
2018
).
33.
M. C.
Kennedy
and
O.
Anthony
, “
Predicting the output from a complex computer code when fast approximations are available
,”
Biometrika
87
(
1
),
1
13
(
2000
).
34.
Z.-H.
Han
,
Zimmermann
, and
S.
Görtz
, “
Alternative cokriging method for variable-fidelity surrogate modeling
,”
AIAA J.
50
(
5
),
1205
1210
(
2012
).
35.
H.
Kaya
,
H.
Tiftikçi
,
Ü.
Kutluay
, and
E.
Sakarya
, “
Generation of surrogate-based aerodynamic model of an UCAV configuration using an adaptive co-Kriging method
,”
Aerosp. Sci. Technol.
95
,
105511
(
2019
).
36.
P.
Liao
,
W.
Song
,
P.
Du
, and
H.
Zhao
, “
Multi-fidelity convolutional neural network surrogate model for aerodynamic optimization based on transfer learning
,”
Phys. Fluids
33
(
12
),
127121
(
2021
).
37.
X.
Zhang
,
F.
Xie
,
T.
Ji
,
Z.
Zhu
, and
Y.
Zheng
, “
Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization
,”
Comput. Methods Appl. Mech. Eng.
373
,
113485
(
2021
).
38.
J.
Tao
and
G.
Sun
, “
Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization
,”
Aerosp. Sci. Technol.
92
,
722
737
(
2019
).
39.
X.
Wang
,
J.
Kou
, and
W.
Zhang
, “
A new dynamic stall prediction framework based on symbiosis of experimental and simulation data
,”
Phys. Fluids
33
(
12
),
127119
(
2021
).
40.
X.
Wang
,
J.
Kou
,
W.
Zhang
, and
Z.
Liu
, “
Incorporating physical models for dynamic stall prediction based on machine learning
,”
AIAA J.
60
,
4428
4439
(
2022
).
41.
H.
Li
,
Y.
Wang
,
Z.
Lyu
, and
J.
Shi
, “
Multi-task learning for recommendation over heterogeneous information network
,” in
IEEE Transactions on Knowledge and Data Engineering
,
2020
.
42.
Y.
Zhang
and
Q.
Yang
, “
An overview of multi-task learning
,”
Nat. Sci. Rev.
5
(
1
),
30
43
(
2018
).
43.
P.
Spalart
and
S.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” in
30th Aerospace Sciences Meeting and Exhibit
,
1992
.
44.
A.
De Boer
,
M. S.
Van der Schoot
, and
H.
Bijl
, “
Mesh deformation based on radial basis function interpolation
,”
Comput. Struct.
85
(
11–14
),
784
795
(
2007
).
45.
M. B.
Bragg
, “
Experimental aerodynamic characteristics of an NACA 0012 airfoil with simulated glaze ice
,”
J. Aircr.
25
(
9
),
849
854
(
1988
).
46.
H.
Tang
,
J.
Liu
,
M.
Zhao
, and
X.
Gong
, “
Progressive layered extraction (PLE): A novel multi-task learning (MTL) model for personalized recommendations
,” in
Fourteenth ACM Conference on Recommender Systems
(Association for Computing Machinery,
2020
), pp.
269
278
.
47.
R.
Caruana
, “
Multitask learning
,”
Mach. Learning
28
(
1
),
41
75
(
1997
).
48.
S.
Chen
,
S. A.
Billings
,
C. F. N.
Cowan
, and
P. M.
Grant
, “
Non-linear systems identification using radial basis functions
,”
Int. J. Syst. Sci.
21
(
12
),
2513
2539
(
1990
).
49.
R.
Eberhart
and
J.
Kennedy
, “
A new optimizer using particle swarm theory
,” in
MHS'95 Proceedings of the Sixth International Symposium on Micro Machine and Human Science
(
IEEE
,
1995
), pp.
39
43
.
You do not currently have access to this content.