Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general artificial-intelligence-driven frameworks for low-temperature plasma simulation: Coefficient-Subnet Physics-Informed Neural Network (CS-PINN) and Runge–Kutta Physics-Informed Neural Network (RK-PINN). CS-PINN uses either a neural network or an interpolation function (e.g., spline function) as the subnet to approximate solution-dependent coefficients (e.g., electron-impact cross sections, thermodynamic properties, transport coefficients, etc.) in plasma equations. Based on this, RK-PINN incorporates the implicit Runge–Kutta formalism in neural networks to achieve a large-time step prediction of transient plasmas. Both CS-PINN and RK-PINN learn the complex non-linear relationship mapping from spatiotemporal space to the equation's solution. Based on these two frameworks, we demonstrate preliminary applications in four cases covering plasma kinetic and fluid modeling. The results verify that both CS-PINN and RK-PINN have good performance in solving plasma equations. Moreover, RK-PINN has the ability to yield a good solution for transient plasma simulation with not only large time steps but also limited noisy sensing data.

1.
G.
Zhang
,
T.
Xiong
,
M.
Yan
,
L.
He
,
X.
Liao
,
C.
He
,
C.
Yin
,
H.
Zhang
, and
L.
Mai
, “
α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage
,”
Nano Energy
49
,
555
(
2018
).
2.
Z. J.
Han
,
A. T.
Murdock
,
D. H.
Seo
, and
A.
Bendavid
, “
Recent progress in plasma-assisted synthesis and modification of 2D materials
,”
2D Mater.
5
,
032002
(
2018
).
3.
L.
Zhong
,
Q.
Gu
, and
S.
Zheng
, “
An improved method for fast evaluating arc quenching performance of a gas based on 1D arc decaying model
,”
Phys. Plasmas
26
,
103507
(
2019
).
4.
M.
Li
,
Z.
Wang
,
R.
Xu
,
X.
Zhang
,
Z.
Chen
, and
Q.
Wang
, “
Advances in plasma-assisted ignition and combustion for combustors of aerospace engines
,”
Aerosp. Sci. Technol.
117
,
106952
(
2021
).
5.
I.
Levchenko
,
S.
Xu
,
S.
Mazouffre
,
D.
Lev
,
D.
Pedrini
,
D.
Goebel
,
L.
Garrigues
,
F.
Taccogna
, and
K.
Bazaka
, “
Perspectives, frontiers, and new horizons for plasma-based space electric propulsion
,”
Phys. Plasmas
27
,
020601
(
2020
).
6.
R. C.
Sanito
,
S.-J.
You
, and
Y.-F.
Wang
, “
Application of plasma technology for treating e-waste: A review
,”
J. Environ. Manage.
288
,
112380
(
2021
).
7.
H.
Cheng
,
J.
Xu
,
X.
Li
,
D.
Liu
, and
X.
Lu
, “
On the dose of plasma medicine: Equivalent total oxidation potential (ETOP)
,”
Phys. Plasmas
27
,
063514
(
2020
).
8.
J.
Loureiro
and
J.
Amorim
,
Kinetics and Spectroscopy of Low Temperature Plasmas
(
Springer International Publishing
,
2016
).
9.
K.
Lee
,
Y.
Kozato
,
S.
Kikuchi
, and
S.
Imao
, “
Numerical simulation of flow control around a rectangular cylinder by dielectric barrier discharge plasma actuators
,”
Phys. Fluids
34
,
077102
(
2022
).
10.
Z.
Chen
,
J.
Hao
, and
C.-Y.
Wen
, “
Control of supersonic compression corner flow using a plasma actuator
,”
Phys. Fluids
34
,
073605
(
2022
).
11.
H.
Zhong
,
M. N.
Shneider
,
X.
Mao
, and
Y.
Ju
, “
Dynamics and chemical mode analysis of plasma thermal-chemical instability
,”
Plasma Sources Sci. Technol.
30
,
035002
(
2021
).
12.
A.
Gleizes
, “
Perspectives on thermal plasma modelling
,”
Plasma Chem. Plasma Process.
35
,
455
(
2015
).
13.
D.
Kochkov
,
J. A.
Smith
,
A.
Alieva
,
Q.
Wang
,
M. P.
Brenner
, and
S.
Hoyer
, “
Machine learning accelerated computational fluid dynamics
,” preprint arXiv:2102.01010 (
2021
).
14.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
(
2019
).
15.
S.
Cai
,
Z.
Mao
,
Z.
Wang
,
M.
Yin
, and
G. E.
Karniadakis
, “
Physics-informed neural networks (PINNs) for fluid mechanics: A review
,” preprint arXiv:2105.09506 (
2021
).
16.
G.
Pang
,
L.
Lu
, and
G. E.
Karniadakis
, “
fPINNs: Fractional physics-informed neural networks
,”
SIAM J. Sci. Comput.
41
,
A2603
(
2019
).
17.
A. D.
Jagtap
and
G. E.
Karniadakis
, “
Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
,”
Commun. Comput. Phys.
28
,
2002
(
2020
).
18.
X.
Chen
,
J.
Duan
, and
G. E.
Karniadakis
, “
Learning and meta-learning of stochastic advection–diffusion–reaction systems from sparse measurements
,”
Eur. J. Appl. Math.
32
,
397
(
2021
).
19.
Y.
Yang
and
P.
Perdikaris
, “
Adversarial uncertainty quantification in physics-informed neural networks
,”
J. Comput. Phys.
394
,
136
(
2019
).
20.
R.
Rodriguez-Torrado
,
P.
Ruiz
,
L.
Cueto-Felgueroso
,
M. C.
Green
,
T.
Friesen
,
S.
Matringe
, and
J.
Togelius
, “
Physics-informed attention-based neural network for hyperbolic partial differential equations: Application to the Buckley–Leverett problem
,”
Sci. Rep.
12
,
7557
(
2022
).
21.
A. D.
Jagtap
,
K.
Kawaguchi
, and
G. E.
Karniadakis
, “
Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
,”
J. Comput. Phys.
404
,
109136
(
2020
).
22.
M.
Raissi
,
A.
Yazdani
, and
G. E.
Karniadakis
, “
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
,”
Science
367
,
1026
(
2020
).
23.
M.
De Florio
,
E.
Schiassi
,
B. D.
Ganapol
, and
R.
Furfaro
, “
Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation
,”
Phys. Fluids
33
,
047110
(
2021
).
24.
A.
Arzani
,
J.-X.
Wang
, and
R. M.
D'Souza
, “
Uncovering near-wall blood flow from sparse data with physics-informed neural networks
,”
Phys. Fluids
33
,
071905
(
2021
).
25.
S.
Cai
,
Z.
Wang
,
S.
Wang
,
P.
Perdikaris
, and
G.
Karniadakis
, “
Physics-Informed Neural Networks (PINNs) for heat transfer problems
,”
J. Heat Transfer
143
,
102719
(
2021
).
26.
R.
Laubscher
, “
Simulation of multi-species flow and heat transfer using physics-informed neural networks
,”
Phys. Fluids
33
,
087101
(
2021
).
27.
G. P. P.
Pun
,
R.
Batra
,
R.
Ramprasad
, and
Y.
Mishin
, “
Physically informed artificial neural networks for atomistic modeling of materials
,”
Nat. Commun.
10
,
2339
(
2019
).
28.
W.
Ji
,
W.
Qiu
,
Z.
Shi
,
S.
Pan
, and
S.
Deng
, “
Stiff-pinn: Physics-informed neural network for stiff chemical kinetics
,”
J. Phys. Chem. A
125
,
8098
(
2021
).
29.
S.
Kawaguchi
,
K.
Takahashi
,
H.
Ohkama
, and
K.
Satoh
, “
Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma
,”
Plasma Sources Sci. Technol.
29
,
025021
(
2020
).
30.
L.
Zhong
,
Q.
Gu
, and
B.
Wu
, “
Deep learning for thermal plasma simulation: Solving 1-D arc model as an example
,”
Comput. Phys. Commun.
257
,
107496
(
2020
).
31.
G. J. M.
Hagelaar
and
L. C.
Pitchford
, “
Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
,”
Plasma Sources Sci. Technol.
14
,
722
(
2005
).
32.
Q.
Gao
,
C.
Niu
,
K.
Adamiak
,
A.
Yang
,
M.
Rong
, and
X.
Wang
, “
Numerical simulation of negative point-plane corona discharge mechanism in SF6 gas
,”
Plasma Sources Sci. Technol.
27
,
115001
(
2018
).
33.
E.
Süli
and
D. F.
Mayers
,
An Introduction to Numerical Analysis
(
Cambridge University Press
,
2003
).
34.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
, and
L.
Antiga
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
NIPS'19: Proceedings of the 33rd International Conference on Neural Information Processing Systems
(
2019
).
35.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” preprint arXiv:1412.6980 (
2014
).
36.
S.
Fasoulas
,
C.-D.
Munz
,
M.
Pfeiffer
,
J.
Beyer
,
T.
Binder
,
S.
Copplestone
,
A.
Mirza
,
P.
Nizenkov
,
P.
Ortwein
, and
W.
Reschke
, “
Combining particle-in-cell and direct simulation Monte Carlo for the simulation of reactive plasma flows
,”
Phys. Fluids
31
,
072006
(
2019
).
37.
H.
Itoh
,
Y.
Miura
,
N.
Ikuta
,
Y.
Nakao
, and
H.
Tagashira
, “
Electron swarm development in SF6. I. Boltzmann equation analysis
,”
J. Phys. D: Appl. Phys.
21
,
922
(
1988
).
38.
L. C.
Pitchford
,
L. L.
Alves
,
K.
Bartschat
,
S. F.
Biagi
,
M.-C.
Bordage
,
I.
Bray
,
C. E.
Brion
,
M. J.
Brunger
,
L.
Campbell
,
A.
Chachereau
,
B.
Chaudhury
,
L. G.
Christophorou
,
E.
Carbone
,
N. A.
Dyatko
,
C. M.
Franck
,
D. V.
Fursa
,
R. K.
Gangwar
,
V.
Guerra
,
P.
Haefliger
,
G. J. M.
Hagelaar
,
A.
Hoesl
,
Y.
Itikawa
,
I. V.
Kochetov
,
R. P.
McEachran
,
W. L.
Morgan
,
A. P.
Napartovich
,
V.
Puech
,
M.
Rabie
,
L.
Sharma
,
R.
Srivastava
,
A. D.
Stauffer
,
J.
Tennyson
,
J.
de Urquijo
,
J.
van Dijk
,
L. A.
Viehland
,
M. C.
Zammit
,
O.
Zatsarinny
, and
S.
Pancheshnyi
, “
LXCat: An open-access, web-based platform for data needed for modeling low temperature plasmas
,”
Plasma Process. Polym.
14
,
1600098
(
2017
).
39.
T. A.
Driscoll
,
N.
Hale
, and
L. N.
Trefethen
,
Chebfun Guide
(
Pafnuty Publications
,
Oxford
,
2014
).
40.
L.
Zhong
,
Y.
Cressault
, and
P.
Teulet
, “
Evaluation of arc quenching ability for a gas by combining 1-D hydrokinetic modeling and Boltzmann equation analysis
,”
IEEE Trans. Plasma Sci.
47
,
1835
(
2019
).
41.
L.
Zhong
,
A. B.
Murphy
,
X.
Wang
, and
M.
Rong
, “
Calculation of two-temperature plasma composition: Part 1. Mass action law methods and extremum searching methods
,”
J. Phys. D: Appl. Phys.
53
,
065202
(
2020
).
42.
L.
Zhong
,
J.
Wang
,
J.
Xu
,
X.
Wang
, and
M.
Rong
, “
Effects of buffer gases on plasma properties and arc decaying characteristics of C4F7N-N2 and C4F7N-CO2 arc plasmas
,”
Plasma Chem. Chem. Plasma Process.
39
,
1379
(
2019
).
You do not currently have access to this content.