The model of electrical conductivity developed earlier allows one to use electrical properties as a tool for the diagnostics of the reaction zone at the detonation of organic high explosives. The comparison of experimental data on electrical conductivity with both the results of experimental research and numerical modeling using Arrhenius kinetics is carried out. The contradiction of the thermal concept of the mechanism of the development of a chemical reaction during detonation is clearly demonstrated. An alternative based on the ideas of A. N. Dremin, J. J. Dick, C. S. Coffey, and F. E. Walker is discussed.

1.
Y. B.
Zel'dovich
, “
On the theory of the propagation of detonation in gaseous systems
,” (“K teorii rasprostraneniya detonatsii v gazoobraznykh sistemakh”),
J. Exp. Teor. Phys.
10
,
542
568
(
1940
) (in Russian).
2.
J.
von Neumann
, “
Theory of detonation waves (OD-2)
,” Report No. Division B-1/Serial N 238 (National Defence Research Committee of the Office of Scientific Research and Development,
1942
).
3.
W.
Döring
, “
Über den detonationsvorgang in gasen
,”
Ann. Phys.
435
,
421
436
(
1943
).
4.
B. A.
Khasainov
,
A. V.
Attetkov
, and
A. A.
Borisov
, “
Shock-wave initiation of porous energetic materials and visco-plastic model of hot spots
,”
Chem. Phys. Rep.
15
(
7
),
987
1062
(
1996
) (in Russian).
5.
C. A.
Handley
,
B. D.
Lambourn
,
N. J.
Whitworth
,
H. R.
James
, and
W. J.
Belfield
, “
Understanding the shock and detonation response of high explosives at the continuum and meso scales
,”
Appl. Phys. Rev.
5
(
1
),
011303
(
2018
).
6.
N. K.
Bourne
and
A. M.
Milne
, “
The temperature of a shock-collapsed cavity
,”
Proc. R. Soc. A
459
(
2036
),
1851
1861
(
2003
).
7.
M. A.
Wood
,
D. E.
Kittell
,
C. D.
Yarrington
, and
A. P.
Thompson
, “
Multiscale modeling of shock wave localization in porous energetic material
,”
Phys. Rev. B
97
(
1
),
014109
(
2018
).
8.
E. M.
Escauriza
,
J. P.
Duarte
,
D. J.
Chapman
,
M. E.
Rutherford
,
L.
Farbaniec
,
J. C.
Jonsson
,
L. C.
Smith
,
M. P.
Olbinado
,
J.
Skidmore
,
P.
Foster
,
T.
Ringrose
,
A.
Rack
, and
D. E.
Eakins
, “
Collapse dynamics of spherical cavities in a solid under shock loading
,”
Sci. Rep.
10
(
1
),
8455
(
2020
).
9.
M. P.
Kroonblawd
and
R. A.
Austin
, “
Sensitivity of pore collapse heating to the melting temperature and shear viscosity of HMX
,”
Mech. Mater.
152
,
103644
(
2021
).
10.
R. A.
Austin
,
N. R.
Barton
,
W. M.
Howard
, and
L. E.
Fried
, “
Modeling pore collapse and chemical reactions in shock-loaded HMX crystals
,”
J. Phys. Conf. Ser.
500
(
PART 5
),
052002
(
2014
).
11.
H. K.
Springer
,
S.
Bastea
,
A. L.
Nichols
 III
,
C. M.
Tarver
, and
J. E.
Reaugh
, “
Modeling the effects of shock pressure and pore morphology on hot spot mechanisms in HMX
,”
Propellants Explos. Pyrotech.
43
(
8
),
805
817
(
2018
).
12.
S.
Roy
,
B. P.
Johnson
,
X.
Zhou
,
Y. T.
Nguyen
,
D. D.
Dlott
, and
H. S.
Udaykumar
, “
Hot spot ignition and growth from tandem micro-scale simulations and experiments on plastic-bonded explosives
,”
J. Appl. Phys.
131
(
20
),
205901
(
2022
).
13.
B. W.
Hamilton
,
M. P.
Kroonblawd
, and
A.
Strachan
, “
The potential energy hotspot: Effects of impact velocity, defect geometry, and crystallographic orientation
,”
J. Phys. Chem. C
126
(
7
),
3743
3755
(
2022
).
14.
C.
Li
,
B. W.
Hamilton
, and
A.
Strachan
, “
Hotspot formation due to shock-induced pore collapse in 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): Role of pore shape and shock strength in collapse mechanism and temperature
,”
J. Appl. Phys.
127
(
17
),
175902
(
2020
).
15.
K.
Zhong
,
R.
Bu
,
F.
Jiao
,
G.
Liu
, and
C.
Zhang
, “
Toward the defect engineering of energetic materials: A review of the effect of crystal defects on the sensitivity
,”
Chem. Eng. J.
429
,
132310
(
2022
).
16.
V. S.
Solov'ev
, “
Some specific features of shock-wave initiation of explosives
,”
Combust. Explos. Shock Waves
36
(
6
),
734
744
(
2000
).
17.
M. P.
Kroonblawd
and
L. E.
Fried
, “
High explosive ignition through chemically activated nanoscale shear bands
,”
Phys. Rev. Lett.
124
(
20
),
206002
(
2020
).
18.
P.
Das
,
P.
Zhao
,
D.
Perera
,
T.
Sewell
, and
H. S.
Udaykumar
, “
Molecular dynamics-guided material model for the simulation of shock-induced pore collapse in β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX)
,”
J. Appl. Phys.
130
(
8
),
085901
(
2021
).
19.
N. K.
Rai
,
S. P.
Koundinyan
,
O.
Sen
,
I. V.
Schweigert
,
B. F.
Henson
, and
H. S.
Udaykumar
, “
Evaluation of reaction kinetics models for meso-scale simulations of hotspot initiation and growth in HMX
,”
Combust. Flame
219
,
225
241
(
2020
).
20.
N. K.
Rai
,
E. M.
Escauriza
,
D. E.
Eakins
, and
H. S.
Udaykumar
, “
Mechanics of shock induced pore collapse in poly(methyl methacrylate) (PMMA): Comparison of simulations and experiments
,”
J. Mech. Phys. Solids
143
,
104075
(
2020
).
21.
M. J.
Cawkwell
and
V. W.
Manner
, “
Ranking the drop-weight impact sensitivity of common explosives using Arrhenius chemical rates computed from quantum molecular dynamics simulations
,”
J. Phys. Chem. A
124
,
74
81
(
2020
).
22.
G.
Chu
,
Z.
Yang
,
T.
Xi
,
J.
Xin
,
Y.
Zhao
,
W.
He
,
M.
Shui
,
Y.
Gu
,
Y.
Xiong
, and
T.
Xu
, “
Relaxed structure of typical nitro explosives in the excited state: Observation, implication and application
,”
Chem. Phys. Lett.
698
,
200
205
(
2018
).
23.
V. I.
Pepekin
,
B. L.
Korsunskii
, and
A. A.
Denisaev
, “
Initiation of solid explosives by mechanical impact
,”
Combust. Explos. Shock Waves
44
,
586
590
(
2008
).
24.
S. V.
Bondarchuk
, “
Impact sensitivity of aryl diazonium chlorides: Limitations of molecular and solid-state approach
,”
J. Mol. Graph. Modell.
89
,
114
121
(
2019
).
25.
V. W.
Manner
,
M. J.
Cawkwell
,
E. M.
Kober
,
T. W.
Myers
,
G. W.
Brown
,
H.
Tian
,
C. J.
Snyder
,
R.
Perriot
, and
D. N.
Preston
, “
Examining the chemical and structural properties that influence the sensitivity of energetic nitrate esters
,”
Chem. Sci.
9
,
3649
3663
(
2018
).
26.
M. J.
Cawkwell
,
R.
Perriot
,
N.
Lease
, and
V. W.
Manner
, “
Systematic study of the explosive chemical kinetics of derivatives of ETN and PETN at low pressure
,”
AIP Conf. Proc.
2272
,
070006
(
2020
).
27.
C.
Lin
and
K. H.
Luo
, “
Kinetic simulation of unsteady detonation with thermodynamic nonequilibrium effects
,”
Combust. Explos. Shock Waves
56
,
435
443
(
2020
).
28.
H.
Zheng
and
M.
Yu
, “
Thermodynamically consistent detonation model for solid explosives
,”
Combust. Explos. Shock Waves
56
,
545
555
(
2020
).
29.
B.
Stimac
,
H. Y. S.
Chan
,
M.
Kunzel
, and
M.
Suceska
, “
Numerical modelling of detonation reaction zone of nitromethane by EXPLO5 code and Wood and Kirkwood theory
,”
Cent. Euro. J. Energy Mater.
17
,
239
261
(
2020
).
30.
S. G.
Andreev
,
A. V.
Babkin
,
F. A.
Baum
,
N. A.
Imkhovik
,
I. F.
Kobylkin
,
V. I.
Kolpakov
,
S. V.
Ladov
,
V. A.
Odintsov
,
L. P.
Orlenko
,
V. N.
Okhitin
,
V. V.
Selivanov
,
V. S.
Solov'ev
,
V. P.
Chelyshev
,
K. P.
Stanyukovich
, and
B. I.
Shekhter
,
Physics of Explosion
[Fizika Vzryva] (Fizmatlit, Moscow, 2004), Vol. 1, p. 832 (in Russian).
31.
T. R.
Botcher
and
C. A.
Wight
, “
Transient thin film laser pyrolysis of RDX
,”
J. Phys. Chem.
97
,
9149
9153
(
1993
).
32.
X.
Zhao
,
E. J.
Hintsa
, and
Y. T.
Lee
, “
Infrared multiphoton dissociation of RDX in a molecular beam
,”
J. Chem. Phys.
88
,
801
810
(
1988
).
33.
A. C.
Landerville
,
I. I.
Oleynik
, and
C. T.
White
, “
Reactive molecular dynamics of hypervelocity collisions of PETN molecules
,”
J. Phys. Chem. A
113
,
12094
12104
(
2009
).
34.
V.
Stepanov
,
V.
Anglade
,
W. A.
Balas Hummers
,
A. V.
Bezmelnitsyn
, and
L. N.
Krasnoperov
, “
Production and sensitivity evaluation of nanocrystalline RDX-based explosive compositions
,”
Propellants Explos. Pyrotech.
36
,
240
246
(
2011
).
35.
C. M.
Tarver
, “
Multiple roles of highly vibrationally excited molecules in the reaction zones of detonation waves
,”
J. Phys. Chem. A
101
,
4845
4851
(
1997
).
36.
C. M.
Tarver
and
T. D.
Tran
, “
Thermal decomposition models for HMX-based plastic bonded explosives
,”
Combust. Flame
137
,
50
62
(
2004
).
37.
V. F.
Anisichkin
, “
On the mechanism of the detonation of organic high explosives
,”
Russ. J. Phys. Chem. B
10
,
451
455
(
2016
).
38.
Y.
Li
,
R. K.
Kalia
,
A.
Nakano
,
K.-I.
Nomura
, and
P.
Vashishta
, “
Multistage reaction pathways in detonating high explosives
,”
Appl. Phys. Lett.
105
,
204103
(
2014
).
39.
A. V.
Fedorov
,
A. L.
Mikhailov
,
L. K.
Antonyuk
,
D. V.
Nazarov
, and
S. A.
Finyushin
, “
Determination of parameters of detonation waves in PETN and HMX single crystals
,”
Combust. Explos. Shock Waves
47
,
601
605
(
2011
).
40.
M. S.
Powell
,
M. N.
Sakano
,
M. J.
Cawkwell
,
P. R.
Bowlan
,
K. E.
Brown
,
C. A.
Bolme
,
D. S.
Moore
,
S. F.
Son
,
A.
Strachan
, and
S. D.
McGrane
, “
Insight into the chemistry of PETN under shock compression through ultrafast broadband mid-infrared absorption spectroscopy
,”
J. Phys. Chem. A
124
,
7031
7046
(
2020
).
41.
A. P.
Ershov
,
N. P.
Satonkina
, and
G. M.
Ivanov
, “
High-resolution conductivity profile measurements in detonating pressed explosive
,”
Tech. Phys. Lett.
30
,
1048
1050
(
2004
).
42.
A. P.
Ershov
,
N. P.
Satonkina
, and
G. M.
Ivanov
, “
Electroconductivity profiles in dense high explosives
,”
Russ. J. Phys. Chem. B
1
,
588
599
(
2007
).
43.
A. P.
Ershov
and
N. P.
Satonkina
, “
Investigation of the reaction zone in heterogeneous explosives substances using an electrical conductivity method
,”
Combust. Explos. Shock Waves
45
,
205
210
(
2009
).
44.
N. P.
Satonkina
and
I. A.
Rubtsov
, “
Electrical conductivity distribution during detonation of a TATB–based explosive
,”
Tech. Phys.
61
,
142
145
(
2016
).
45.
A. P.
Ershov
,
N. P.
Satonkina
,
A. V.
Plastinin
, and
A. S.
Yunoshev
, “
Diagnostics of the chemical reaction zonein detonation of solid explosives
,”
Combust. Explos. Shock Waves
56
,
705
715
(
2020
).
46.
N. P.
Satonkina
,
A. P.
Ershov
,
A. V.
Plastinin
, and
A. S.
Yunoshev
, “
Chemical reaction zone and electrical conductivity profile in detonating high explosives
,”
Combust. Flame
206
,
249
251
(
2019
).
47.
N. P.
Satonkina
, “
Chemical composition of detonation products of condensed explosives and its relationship to electrical conductivity
,”
J. Phys.: Conf. Ser.
946
,
012059
(
2018
).
48.
N. P.
Satonkina
, “
Duration of the zone of high electrical conductivity at the detonation of RDX of different densities
,”
J. Phys.: Conf. Ser.
894
,
012136
(
2017
).
49.
N.
Satonkina
,
A.
Ershov
,
A.
Kashkarov
,
A.
Mikhaylov
,
E.
Pruuel
,
I.
Rubtsov
,
I.
Spirin
, and
V.
Titova
, “
Electrical conductivity distribution in detonating benzotrifuroxane
,”
Sci. Rep.
8
,
9635
(
2018
).
50.
N. P.
Satonkina
, “
The dynamics of carbon nanostructures at detonation of condensed high explosives
,”
J. Appl. Phys.
118
,
245901
(
2015
).
51.
N. P.
Satonkina
, “
Correlation of electrical conductivity in the detonation of condensed explosives with their carbon content
,”
Combust. Explos. Shock Waves
52
,
488
492
(
2016
).
52.
N. P.
Satonkina
and
D. A.
Medvedev
, “
On the mechanism of carbon nanostructures formation at reaction of organic compounds at high pressure and temperature
,”
AIP Adv.
7
(
8
),
085101
(
2017
).
53.
N. P.
Satonkina
, “
Influence of the grain size of high explosives on the duration of a high conductivity zone at the detonation
,”
Sci. Rep.
9
,
12256
(
2019
).
54.
A. V.
Fedorov
,
A. V.
Menshikh
, and
N. B.
Yagodin
, “
Structure of a detonation front in heterogeneous high explosives (HE)
,”
Chem. Phys. Rep.
18
,
2129
2138
(
2000
).
55.
B. G.
Loboiko
and
S. N.
Lubyatinsky
, “
Reaction zones of detonating solid explosives
,”
Combust. Explos. Shock Waves
36
,
716
733
(
2000
).
56.
H.
Pei
,
W.
Huang
,
X.
Zhang
, and
X.
Zheng
, “
Measuring detonation wave profiles in plastic–bonded explosives using PDV
,”
AIP Adv.
9
,
015306
(
2019
).
57.
N. P.
Satonkina
and
A. P.
Ershov
, “
Dynamics of carbon nanostructures in the benzotrifuroxan detonation
,”
J. Phys.: Conf. Ser.
1787
,
012015
(
2021
).
58.
K.
Tanaka
, “
Detonation properties of condensed explosives computed using the Kihara–Hikita–Tanaka equation of state
,” National Chemical Laboratory for Industry, Tsukuba Research Center (Tsukuba, Japan,
1983
), p. 304.
59.
V. Yu.V. Yu.
Dolmatov
,
A. N.
Ozerin
,
I. I.
Kulakova
,
O. O.
Bochechka
,
N. M.
Lapchuk
,
V.
Myllymaki
, and
A.
Vehanen
, “
Detonation nanodiamonds: New aspects in the theory and practice of synthesis, properties and applications
,”
Russ. Chem. Rev.
89
,
1428
1462
(
2020
).
60.
V. F.
Anisichkin
, “
Isotope studies of detonation mechanisms of TNT, RDX, and HMX
,”
Combust. Explos. Shock Waves
43
,
580
586
(
2007
).
61.
J. A.
Hammons
,
M. H.
Nielsen
,
M.
Bagge-Hansen
,
S.
Bastea
,
C.
May
,
W. L.
Shaw
,
A.
Martin
,
Y.
Li
,
N.
Sinclair
,
L. M.
Lauderbach
,
R. L.
Hodgin
,
D. A.
Orlikowski
,
L. E.
Fried
, and
T. M.
Willey
, “
Submicrosecond aggregation during detonation synthesis of nanodiamond
,”
J. Phys. Chem. Lett.
12
,
5286
5293
(
2021
).
62.
V.
Yu. Dolmatov
,
A. N.
Ozerin
,
A.
Vehanen
,
V.
Myllymäki
, and
A. O.
Dorokhov
, “
On the mechanism of formation of detonation diamonds
,”
J. Superhard Mater.
43
(
5
),
330
335
(
2021
).
63.
O. N.
Breusov
, “
On the question of the mechanism of dynamic synthesis of diamond from organic substances
,”
Khim. Fiz.
21
,
110
112
(
2002
) (in Russian).
64.
Y.
Nomura
and
K.
Kawamura
, “
Soot derived from the detonation of a trinitrotoluene charge
,”
Carbon
22
,
189
191
(
1984
).
65.
N. R.
Greiner
,
D. S.
Phillips
,
J. D.
Johnson
, and
F.
Volk
, “
Diamonds in detonation soot
,”
Nature
333
,
440
442
(
1988
).
66.
X.
Tao
,
X.
Kang
, and
Z.
Jiazheng
, “
Tem and hrem studies on ultradispersed diamonds containing soot formed by explosive detonation
,”
Mater. Sci. Eng. B
38
,
L1
L4
(
1996
).
67.
A. O.
Kashkarov
,
E. R.
Pruuel
,
K. A.
Ten
,
I. A.
Rubtsov
,
E. Y.
Gerasimov
, and
P. I.
Zubkov
, “
Transmission electron microscopy and X-ray diffraction studies of the detonation soot of high explosives
,”
J. Phys.: Conf. Ser.
774
,
012072
(
2016
).
68.
N. P.
Satonkina
,
A. P.
Ershov
,
A. O.
Kashkarov
, and
I. A.
Rubtsov
, “
Elongated conductive structures in detonation soot of high explosives
,”
RSC Adv.
10
,
17620
17626
(
2020
).
69.
P.
Kowalczyk
,
E.-Z.
Piña-Salazar
,
J. K.
Kirkensgaard
,
A. P.
Terzyk
,
R.
Futamura
,
T.
Hayashi
,
E.
Osawa
,
K.
Kaneko
, and
A.
Ciach
, “
Reconstructing the fractal clusters of detonation nanodiamonds from small–angle X-ray scattering
,”
Carbon
169
,
349
356
(
2020
).
70.
A. N.
Ozerin
,
T. S.
Kurkin
,
L. A.
Ozerina
, and
V. Y.
Dolmatov
, “
X-ray diffraction study of the structure of detonation nanodiamonds
,”
Crystallogr. Rep.
53
,
60
67
(
2008
).
71.
A. V.
Fedorov
,
A. L.
Mikhailov
,
L. K.
Antonyuk
,
D. V.
Nazarov
, and
S. A.
Finyushin
, “
Determination of chemical reaction zone parameters, Neumann peak parameters, and the state in the Chapman–Jouguet plane in homogeneous and heterogeneous high explosives
,”
Combust. Explos. Shock Waves
48
,
302
308
(
2012
).
72.
A. V.
Utkin
,
V. M.
Mochalova
,
A. I.
Rogacheva
, and
V. V.
Yakushev
, “
Structure of detonation waves in PETN
,”
Combust. Explos. Shock Waves
53
,
199
204
(
2017
).
73.
B. F.
Henson
,
B. W.
Asay
,
L. B.
Smilowitz
, and
P. M.
Dickson
, “
Ignition chemistry in HMX from thermal explosion to detonation
,”
AIP Conf. Proc.
620
,
1069
1072
(
2002
).
74.
R.
Menikoff
, “
Detonation waves in PBX 9501
,”
Combust. Theory Modell.
10
,
1003
1021
(
2006
).
75.
C. M.
Tarver
,
S. K.
Chidester
, and
A. L.
Nichols
 III
, “
Critical conditions for impact- and shock-induced hot spots in solid explosives
,”
J. Phys. Chem.
100
,
5794
5799
(
1996
).
76.
B. F.
Henson
,
L.
Smilowitz
,
J. J.
Romero
, and
B. W.
Asay
, “
Modeling thermal ignition and the initial conditions for internal burning in PBX 9501
,”
AIP Conf. Proc.
1195
,
257
262
(
2009
).
77.
A. P.
Ershov
and
N. P.
Satonkina
, “
Electrical conductivity distributions in detonating low-density explosives—Grain size effect
,”
Combust. Flame
157
,
1022
1026
(
2010
).
78.
A. P.
Ershov
,
A. O.
Kashkarov
,
E. R.
Pruuel
,
N. P.
Satonkina
,
V. V.
Sil'vestrov
,
A. S.
Yunoshev
, and
A. V.
Plastinin
, “
Nonideal detonation regimes in low density explosives
,”
J. Appl. Phys.
119
,
075903
(
2016
).
79.
V.
Pichot
,
B.
Risse
,
F.
Schnell
,
J.
Mory
, and
D.
Spitzer
, “
Understanding ultrafine nanodiamond formation using nanostructured explosives
,”
Sci. Rep.
3
,
2159
(
2013
).
80.
V.
Pichot
,
M.
Comet
,
B.
Risse
, and
D.
Spitzer
, “
Detonation of nanosized explosive: New mechanistic model for nanodiamond formation
,”
Diamond Relat. Mater.
54
,
59
63
(
2015
).
81.
V. M.
Mochalova
,
A. V.
Utkin
, and
A. V.
Anan'in
, “
Effect of the degree of dispersion on the detonation wave structure in pressed TNETB
,”
Combust. Explos. Shock Waves
43
,
575
579
(
2007
).
82.
A. Y.
Apin
, “
Influence of physical structure and aggregate state on detonability of high explosives
,”
Dokl. Akad. Nauk SSSR
50
,
285
289
(
1945
) (in Russian).
83.
A. Y.
Apin
and
L. N.
Stesik
, “
Critical diameters of powdered high explosives. Physics of explosion
” [Fizika vzryva]. Sbornik No. 3 (Izd-vo AN SSSR. pp.
87
92
,
1955
) (in Russian).
84.
B. A.
Khasainov
,
B. S.
Ermolaev
,
H.-N.
Presles
, and
P.
Vida
, “
On the effect of grain size on shock sensitivity of heterogeneous high explosives
,”
Shock Waves
7
,
89
105
(
1997
).
85.
D. V.
Mil'chenko
,
V. A.
Gubachev
,
L. A.
Andreevskikh
,
S. A.
Vakhmistrov
,
A. L.
Mikhailov
,
V. A.
Burnashov
,
E. V.
Khaldeev
,
A. I.
Pyatoikina
,
S. S.
Zhuravlev
, and
V. N.
German
, “
Nanostructured explosives produced by vapor deposition: Structure and explosive properties
,”
Combust. Explos. Shock Waves
51
,
80
85
(
2015
).
86.
J. J.
Dick
,
R. N.
Mulford
,
W. J.
Spencer
,
D. R.
Pettit
,
E.
Garcia
, and
D. C.
Shaw
, “
Shock response of pentaerythritol tetranitrate single crystals
,”
J. Appl. Phys.
70
,
3572
3587
(
1991
).
87.
C. S.
Coffey
, “
Initiation due to plastic deformation from shock or impact
,”
Theor. Comput. Chem.
13
,
101
123
(
2003
).
88.
A. N.
Dremin
, “
Discoveries in detonation of molecular condensed explosives in the 20th century
,”
Combust. Explos. Shock Waves
36
,
704
715
(
2000
).
89.
F. E.
Walker
, “
Physical kinetics
,”
J. Appl. Phys.
63
,
5548
5554
(
1988
).
90.
F. E.
Walker
, “
New support for physical kinetics
,”
Chem. Phys. Rep.
17
,
31
36
(
1998
) (in Russian).
91.
C. S.
Yoo
,
N. C.
Holmes
,
P. C.
Souers
,
C. J.
Wu
,
F. H.
Ree
, and
J. J.
Dick
, “
Anisotropic shock sensitivity and detonation temperature of pentaerythritol tetranitrate single crystal
,”
J. Appl. Phys.
88
,
70
75
(
2000
).
92.
N.
Wang
,
J.
Peng
,
A.
Pang
,
J.
Hu
, and
T.
He
, “
Study on the anisotropic response of condensed-phase RDX under repeated stress wave loading via ReaxFF molecular dynamics simulation
,”
J. Mol. Model.
22
,
229
(
2016
).
93.
X.
Wang
,
Y.
Wu
,
F.
Huang
, and
L.
Zhang
, “
Dynamic anisotropic response of β–HMX and α–RDX single crystals using plate impact experiments at 1 GPa
,”
Propellants Explos. Pyrotech.
43
,
759
770
(
2018
). 2018.
94.
X.
Huang
,
F.
Guo
,
K.
Yao
,
Z.
Lu
,
Y.
Ma
,
Y.
Wen
,
X.
Dai
,
M.
Li
, and
X.
Long
, “
Anisotropic hydrogen bond structures and orientation dependence of shock sensitivity in crystalline 1,3,5-tri-amino-2,4,6-tri-nitrobenzene (TATB)
,”
Phys. Chem. Chem. Phys.
22
,
11956
11966
(
2020
).
95.
M. J.
Cawkwell
,
N.
Mohan
,
D. J.
Luscher
, and
K. J.
Ramos
, “
Dissociation of 111 dislocations on {11¯0} in pentaerythritol tetranitrate
,”
Philos. Mag.
99
,
1079
1089
(
2019
).
96.
J. J.
Dick
, “
Anomalous shock initiation of detonation in pentaerythritol tetranitrate crystals
,”
J. Appl. Phys.
81
,
601
612
(
1997
).
97.
O. V.
Sergeev
and
A. V.
Yanilkin
, “
Molecular dynamics simulation of combustion front propagation in a PETN single crystal
,”
Combust. Explos. Shock Waves
50
,
323
332
(
2014
) (in Russian).
98.
K. K.
Shvedov
, “
Some problems of detonation of condensed explosives
,”
Khim. Fiz.
23
,
27
50
(
2004
) (in Russian).
99.
National Center for Biotechnology Information (2022). PubChem Substance Record for SID 134972963, 10L39TRG1Z, Source: ChemIDplus. Retrieved July 30, 2022 from https://pubchem.ncbi.nlm.nih.gov/substance/134972963.
100.
A. N.
Dremin
and
L. V.
Babare
, “
The shock wave chemistry of organic substances
,”
AIP Conf. Proc.
78
,
363
381
(
1982
).
101.
D. J.
Erskine
and
W. J.
Nellis
, “
Shock-induced martensitic transformation of highly oriented graphite to diamond
,”
J. Appl. Phys.
71
,
4882
4886
(
1992
).
102.
E.
Stavrou
,
M.
Bagge-Hansen
,
J. A.
Hammons
,
M. H.
Nielsen
 et al, “
Detonation-induced transformation of graphite to hexagonal diamond
,”
Phys. Rev. B
102
,
104116
(
2020
).
103.
M. P.
Kroonblawd
and
N.
Goldman
, “
Mechanochemical formation of heterogeneous diamond structures during rapid uniaxial compression in graphite
,”
Phys. Rev. B
97
,
184106
(
2018
).
104.
E. V.
Mironov
,
E. A.
Petrov
, and
A. Y.
Korets
, “
From analysis of the structure of ultrafine diamond to the problem of its formation kinetics
,”
Combust. Explos. Shock Waves
40
,
473
476
(
2004
).
105.
V. Y.
Klimenko
, “
Multiprocessor detonation model (version 3)
,”
Chem. Phys. Rep
17
,
13
30
(
1998
) (in Russian).
106.
V. Y.
Dolmatov
, “
On elemental composition and crystal-chemical parameters of detonation nanodiamonds
,”
J. Superhard Mater.
31
,
158
164
(
2009
).
107.
V. L.
Kuznetsov
,
M. N.
Aleksandrov
,
I. V.
Zagoruiko
,
A. L.
Chuvilin
,
E. M.
Moroz
,
V. N.
Kolomiichuk
,
V. A.
Likholobov
,
P. M.
Brylyakov
, and
G. V.
Sakovitch
, “
Study of ultradispersed diamond powders obtained using explosion energy
,”
Carbon
29
,
665
668
(
1991
).
108.
N. M.
Kuznetsov
,
S. I.
Belousov
,
R. A.
Kamyshinsky
,
A. L.
Vasiliev
,
S. N.
Chvalun
,
E. B.
Yudina
, and
A. Y.
Vul
, “
Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: Effect of nanodiamonds surface
,”
Carbon
174
,
138
147
(
2021
).
109.
A.
Krüger
,
F.
Kataoka
,
M.
Ozawa
,
T.
Fujino
,
Y.
Suzuki
,
A. E.
Aleksenskii
,
A.
Ya. Vul'
, and
E.
Ōsawa
, “
Unusually tight aggregation in detonation nanodiamond: Identification and disintegration
,”
Carbon
43
,
1722
1730
(
2005
).
110.
G. V.
Sakovich
,
A. S.
Zharkov
, and
E. A.
Petrov
, “
Results of research into the physicochemical processes of detonation synthesis and nanodiamond applications
,”
Nanotechnol. Russ.
8
,
581
591
(
2013
).
111.
A.
Ya. Korets
,
E. V.
Mironov
, and
E. A.
Petrov
, “
IR spectroscopic study of the organic component of ultrafine diamond produced by detonation synthesis
,”
Combust. Explos. Shock Waves
39
,
464
469
(
2003
).
112.
B. P.
Johnson
,
X.
Zhou
,
H.
Ihara
, and
D. D.
Dlott
, “
Observing hot spot formation in individual explosive crystals under shock compression
,”
J. Phys. Chem. A
124
,
4646
4653
(
2020
).
113.
W. P.
Bassett
,
B. P.
Johnson
 III
,
L.
Salvati
,
E. J.
Nissen
,
M.
Bhowmick
, and
D. D.
Dlott
, “
Shock initiation microscopy with high time and space resolution
,”
Propellants Explos. Pyrotech.
45
,
223
235
(
2020
).

Supplementary Material

You do not currently have access to this content.