Data-driven prediction of spatiotemporal fields in fluid flow problems has received significant interest lately. However, the scarcity of data often plagues the accuracy of the prevalent approaches, particularly in situations where the cost associated with the generation of high-fidelity data is prohibitively expensive. Moreover, the data sources in many spatiotemporal fluid flow problems present a hierarchy of fidelities with respect to their computational cost/accuracy, such that the higher fidelity sources are more accurate and also more expensive than the low-fidelity sources. This article presents a novel multi-fidelity spatiotemporal modeling approach whereby the lower fidelity data source for a dynamical process is gainfully utilized in increasing the accuracy of predicting the higher fidelity fields, thereby reducing the overhead of high-fidelity simulations for data-driven prediction. The methodology is based on non-intrusive reduced order modeling using deep convolutional autoencoders, combined with a latent-space evolution framework based on multi-fidelity Gaussian processes. This framework results in probabilistic spatiotemporal predictions for unknown operating conditions of the dynamical system, which provides the end user with quantified levels of uncertainties associated with the data-driven predictions. The framework is validated on a prototypical fluid flow problem of interest: two-dimensional incompressible viscous flow around a cylinder.

1.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
2.
K.
Fukami
,
K.
Hasegawa
,
T.
Nakamura
,
M.
Morimoto
, and
K.
Fukagata
, “
Model order reduction with neural networks: Application to laminar and turbulent flows
,”
SN Comput. Sci.
2
,
467
(
2021
).
3.
S. L.
Brunton
,
M. S.
Hemati
, and
K.
Taira
, “
Special issue on machine learning and data-driven methods in fluid dynamics
,”
Theor. Comput. Fluid Dyn.
34
,
333
337
(
2020
).
4.
R.
Maulik
,
K.
Fukami
,
N.
Ramachandra
,
K.
Fukagata
, and
K.
Taira
, “
Probabilistic neural networks for fluid flow surrogate modeling and data recovery
,”
Phys. Rev. Fluids
5
,
104401
(
2020
).
5.
J.
Borggaard
,
T.
Iliescu
, and
Z.
Wang
, “
Artificial viscosity proper orthogonal decomposition
,”
Math. Comput. Modell.
53
,
269
279
(
2011
).
6.
R.
Maulik
,
B.
Lusch
, and
P.
Balaprakash
, “
Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
,”
Phys. Fluids
33
,
037106
(
2021
).
7.
F. J.
Gonzalez
and
M.
Balajewicz
, “
Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems
,” arXiv:1808.01346 (
2018
).
8.
T.
Gangopadhyay
,
V.
Ramanan
,
A.
Akintayo
,
P. K.
Boor
,
S.
Sarkar
,
S. R.
Chakravarthy
, and
S.
Sarkar
, “
3D convolutional selective autoencoder for instability detection in combustion systems
,”
Energy AI
4
,
100067
(
2021
).
9.
A. T.
Mohan
and
D. V.
Gaitonde
, “
A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks
,” arXiv:1804.09269v1 (
2018
).
10.
J. N.
Kutz
, “
Deep learning in fluid dynamics
,”
J. Fluid Mech.
814
,
1
4
(
2017
).
11.
C. W.
Rowley
and
S. T.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
12.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
421
(
2014
).
13.
S.
Mondal
,
R.
Torelli
,
B.
Lusch
,
P. J.
Milan
, and
G. M.
Magnotti
, “
Accelerating the generation of static coupling injection maps using a data-driven emulator
,”
SAE Int. J. Adv. Curr. Prac. Mobility
3
,
1408
1424
(
2021
).
14.
M.
Raissi
and
G. E.
Karniadakis
, “
Hidden physics models: Machine learning of nonlinear partial differential equations
,”
J. Comput. Phys.
357
,
125
141
(
2018
).
15.
M.
Giselle Fernández-Godino
,
C.
Park
,
N. H.
Kim
, and
R. T.
Haftka
, “
Issues in deciding whether to use multifidelity surrogates
,”
AIAA J.
57
,
2039
2054
(
2019
).
16.
S.
Sarkar
,
S.
Mondal
,
M.
Joly
,
M. E.
Lynch
,
S. D.
Bopardikar
,
R.
Acharya
, and
P.
Perdikaris
, “
Multifidelity and multiscale Bayesian framework for high-dimensional engineering design and calibration
,”
J. Mech. Des.
141
,
121001
(
2019
).
17.
S.
Mondal
,
M.
Joly
, and
S.
Sarkar
, “
Multi-fidelity global-local optimization of a transonic compressor rotor
,” in
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
(
American Society of Mechanical Engineers
,
2019
).
18.
B.
Peherstorfer
,
K.
Willcox
, and
M.
Gunzburger
, “
Survey of multifidelity methods in uncertainty propagation, inference, and optimization
,”
SIAM Rev.
60
,
550
591
(
2018
).
19.
P.
Perdikaris
,
D.
Venturi
,
J. O.
Royset
, and
G. E.
Karniadakis
, “
Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields
,”
Proc. R. Soc. A
471
,
20150018
(
2015
).
20.
M.
Raissi
,
P.
Perdikaris
, and
G.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
21.
X.
Meng
and
G. E.
Karniadakis
, “
A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse pde problems
,”
J. Comput. Phys.
401
,
109020
(
2020
).
22.
S.
Chakraborty
, “
Transfer learning based multi-fidelity physics informed deep neural network
,” arXiv:2005.10614 (
2020
).
23.
G.
Karniadakis
,
Y.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
3
,
422
440
(
2021
).
24.
S.
Wang
,
Y.
Teng
, and
P.
Perdikaris
, “
Understanding and mitigating gradient pathologies in physics-informed neural networks
,” arXiv:2001.04536 (
2020
).
25.
O.
Fuks
and
H. A.
Tchelepi
, “
Limitations of physics informed machine learning for nonlinear two-phase transport in porous media
,”
J. Mach. Learn. Modeling Comput.
1
,
19
37
(
2020
).
26.
K.
Hasegawa
,
K.
Fukami
,
T.
Murata
, and
K.
Fukagata
, “
CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers
,”
Fluid Dyn. Res.
52
,
065501
(
2020
).
27.
B.
Liu
,
J.
Tang
,
H.
Huang
, and
X.-Y.
Lu
, “
Deep learning methods for super-resolution reconstruction of turbulent flows
,”
Phys. Fluids
32
,
025105
(
2020
).
28.
C.
Baral
,
O.
Fuentes
, and
V.
Kreinovich
, “
Why deep neural networks: A possible theoretical explanation
,” in
Studies in Systems, Decision and Control
(
Springer International Publishing
,
2018
), pp.
1
5
.
29.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Assessment of supervised machine learning methods for fluid flows
,”
Theor. Comput. Fluid Dyn.
34
,
497
519
(
2020
).
30.
S. R.
Bukka
,
R.
Gupta
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Assessment of unsteady flow predictions using hybrid deep learning based reduced-order models
,”
Phys. Fluids
33
,
013601
(
2021
).
31.
A.
Kashefi
,
D.
Rempe
, and
L. J.
Guibas
, “
A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries
,”
Phys. Fluids
33
,
027104
(
2021
).
32.
K.
Duraisamy
,
G.
Iaccarino
, and
H.
Xiao
, “
Turbulence modeling in the age of data
,”
Annu. Rev. Fluid Mech.
51
,
357
377
(
2019
).
33.
F.
Ren
,
J.
Rabault
, and
H.
Tang
, “
Applying deep reinforcement learning to active flow control in weakly turbulent conditions
,”
Phys. Fluids
33
,
037121
(
2021
).
34.
C.
Zheng
,
T.
Ji
,
F.
Xie
,
X.
Zhang
,
H.
Zheng
, and
Y.
Zheng
, “
From active learning to deep reinforcement learning: Intelligent active flow control in suppressing vortex-induced vibration
,”
Phys. Fluids
33
,
063607
(
2021
).
35.
M.
Morimoto
,
K.
Fukami
, and
K.
Fukagata
, “
Experimental velocity data estimation for imperfect particle images using machine learning
,”
Phys. Fluids
33
,
087121
(
2021
).
36.
N. B.
Erichson
,
L.
Mathelin
,
Z.
Yao
,
S. L.
Brunton
,
M. W.
Mahoney
, and
J. N.
Kutz
, “
Shallow neural networks for fluid flow reconstruction with limited sensors
,”
Proc. R. Soc. A
476
,
20200097
(
2020
).
37.
T.
Murata
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
,”
J. Fluid Mech.
882
,
1
15
(
2020
).
38.
J.-Z.
Peng
,
S.
Chen
,
N.
Aubry
,
Z.
Chen
, and
W.-T.
Wu
, “
Unsteady reduced-order model of flow over cylinders based on convolutional and deconvolutional neural network structure
,”
Phys. Fluids
32
,
123609
(
2020
).
39.
P.
Wu
,
S.
Gong
,
K.
Pan
,
F.
Qiu
,
W.
Feng
, and
C.
Pain
, “
Reduced order model using convolutional auto-encoder with self-attention
,”
Phys. Fluids
33
,
077107
(
2021
).
40.
X.
Wang
,
R.
Girshick
,
A.
Gupta
, and
K.
He
, “
Non-local neural networks
,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2018
), pp.
7794
7803
.
41.
Z.
Dai
,
H.
Liu
,
Q. V.
Le
, and
M.
Tan
, “
Coatnet: Marrying convolution and attention for all data sizes
,” in
Advances in Neural Information Processing Systems
, edited by
M.
Ranzato
,
A.
Beygelzimer
,
Y.
Dauphin
,
P.
Liang
, and
J. W.
Vaughan
(
Curran Associates, Inc.
,
2021
), Vol.
34
, pp.
3965
3977
.
42.
R.
Han
,
Y.
Wang
,
Y.
Zhang
, and
G.
Chen
, “
A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network
,”
Phys. Fluids
31
,
127101
(
2019
).
43.
S.
Lee
and
D.
You
, “
Data-driven prediction of unsteady flow over a circular cylinder using deep learning
,”
J. Fluid Mech.
879
,
217
254
(
2019
).
44.
H.
Ganti
and
P.
Khare
, “
Data-driven surrogate modeling of multiphase flows using machine learning techniques
,”
Comput. Fluids
211
,
104626
(
2020
).
45.
C.
Rasmussen
and
C.
Williams
,
Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
(
The MIT Press
,
2005
).
46.
S.
Mondal
,
G. M.
Magnotti
,
B.
Lusch
,
R.
Maulik
, and
R.
Torelli
, “
Machine learning-enabled prediction of transient injection map in automotive injectors with uncertainty quantification
,” in
Proceedings of ASME 2021 Internal Combustion Engine Division Fall Technical Conference
,
2021
.
47.
J.
Wu
,
Introduction to Convolutional Neural Networks
(
Nanjing University
,
China
,
2017
).
48.
S.
Albawi
,
T. A.
Mohammed
, and
S.
Al-Zawi
, “
Understanding of a convolutional neural network
,” in
International Conference on Engineering and Technology (ICET)
(
IEEE
,
2017
), pp.
1
6
.
49.
K.
O'Shea
and
R.
Nash
, “
An introduction to convolutional neural networks
,” CoRR abs/1511.08458 (
2015
), 1511.08458.
50.
C.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer
,
2007
).
51.
L. P.
Swiler
,
M.
Gulian
,
A. L.
Frankel
,
C.
Safta
, and
J. D.
Jakeman
, “
A survey of constrained Gaussian process regression: Approaches and implementation challenges
,”
J. Mach. Learn. Modeling Comput.
1
,
119
156
(
2020
).
52.
S.
Mondal
,
D.
Gwynn
,
A.
Ray
, and
A.
Basak
, “
Investigation of melt pool geometry control in additive manufacturing using hybrid modeling
,”
Metals
10
,
683
(
2020
).
53.
S.
Ghosh
,
S.
Mondal
,
E.
Fernandez
,
J. S.
Kapat
, and
A.
Roy
, “
Parametric shape optimization of pin-fin arrays using a surrogate model-based Bayesian method
,”
J. Thermophys. Heat Transfer
35
,
245
255
(
2021
).
54.
P.
Perdikaris
,
M.
Raissi
,
A.
Damianou
,
N. D.
Lawrence
, and
G. E.
Karniadakis
, “
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
,”
Proc. R. Soc. A
473
,
20160751
(
2017
).
55.
D.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Programming
45
,
503
528
(
1989
).
56.
K.
Murphy
,
Machine Learning: A Probabilistic Perspective
, 1st ed. (
The MIT Press
,
2012
).
57.
M.
Kennedy
and
A.
O'Hagan
, “
Predicting the output from a complex computer code when fast approximations are available
,”
Biometrika
87
,
1
13
(
2000
).
58.
S.
Mondal
,
A.
Chattopadhyay
,
A.
Mukhopadhyay
, and
A.
Ray
, “
Transfer learning of deep neural networks for predicting thermoacoustic instabilities in combustion systems
,”
Energy AI
5
,
100085
(
2021
).
59.
B.
Neyshabur
,
H.
Sedghi
, and
C.
Zhang
, “
What is being transferred in transfer learning
?,” in
Advances in Neural Information Processing Systems
, edited by
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M.
Balcan
, and
H.
Lin
(
Curran Associates, Inc.
,
2020
), Vol.
33
, pp.
512
523
.
60.
R.
Benzi
,
S.
Succi
, and
M.
Vergassola
, “
The lattice Boltzmann equation: Theory and applications
,”
Phys. Rep.
222
,
145
197
(
1992
).
61.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method: Principles and Practice
(Springer, Cham,
2016
).
62.
J.
Latt
,
O.
Malaspinas
,
D.
Kontaxakis
,
A.
Parmigiani
,
D.
Lagrava
,
F.
Brogi
,
M. B.
Belgacem
,
Y.
Thorimbert
,
S.
Leclaire
,
S.
Li
,
F.
Marson
,
J.
Lemus
,
C.
Kotsalos
,
R.
Conradin
,
C.
Coreixas
,
R.
Petkantchin
,
F.
Raynaud
,
J.
Beny
, and
B.
Chopard
, “
Palabos: Parallel lattice Boltzmann solver, development and application of open-source software for problems with numerical PDEs
,”
Comput. Math. Appl.
81
,
334
350
(
2021
).
63.
P.
Ramachandran
,
B.
Zoph
, and
Q. V.
Le
, “
Searching for activation functions
,” arXiv:1710.05941 (
2017
).
64.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
International Conference of Learning Representations
,
2017
.
65.
R.
Caruana
,
S.
Lawrence
, and
C. L.
Giles
, “
Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
,” in Advances in Neural Information Processing Systems, edited by
T.
Leen
,
T.
Dietterich
, and
V.
Tresp
, Vol. 13,
2000
.
66.
S.
Kim
and
H.
Kim
, “
A new metric of absolute percentage error for intermittent demand forecasts
,”
Int. J. Forecasting
32
,
669
679
(
2016
).
67.
C. S.
Greco
,
G.
Paolillo
,
T.
Astarita
, and
G.
Cardone
, “
The von Kármán street behind a circular cylinder: Flow control through synthetic jet placed at the rear stagnation point
,”
J. Fluid Mech.
901
,
A39
(
2020
).
68.
P.
Schober
,
C.
Boer
, and
L. A.
Schwarte
, “
Correlation coefficients: Appropriate use and interpretation
,”
Anesth. Analg.
126
(
5
),
1763
1768
(
2018
).
You do not currently have access to this content.