Ratios of streamwise airfoil oscillations to the freestream velocity above 30% have not been well investigated in the literature for a reduced frequency range relevant to unsteady applications. A known departure from the experimental correlation to analytical theory for lower magnitudes of this ratio, known as surge amplitude, motivates a parameter study for constant freestream, at constant low- and high-incidence angles, to understand the circulatory lift dependence on angle of attack, Reynolds number, surge amplitude, and reduced frequency in comparison with theory and higher-order computations. To better understand the increased deviation between theory and experiment with increasing velocity fluctuation, a detailed study of surge amplitude of 0.5 is investigated. The experiment for comparison was a free-surface water tunnel with a NACA (National Advisory Committee for Aeronautics) 0018 airfoil oscillated in the streamwise direction. Force measurements, normalized by instantaneous dynamic pressure, reveal that unsteady lift is dependent on Reynolds number and reduced frequency in both attached and fully separated conditions. In separated conditions, mean and fluctuating lift show a dependency on reduced frequency for larger velocity fluctuations than a relative surge amplitude of 10%. Two-dimensional computations were found to agree well with experimental data for Reynolds number 75 k, low incidence cases, and for high incidence with reduced frequencies less than 0.15, where a fully separated upper surface boundary layer condition occurred. Agreement between computations and experiments was not favorable for reduced frequencies above 0.15 for high incidence cases, where partial upper surface boundary layer reattachment is predicted.

1.
T.
Theodorsen
, “
General theory of aerodynamic instability and the mechanism of flutter
,”
Report No. NACA-TR-496
(
National Advisory Committee for Aeronautics
,
1935
).
2.
R.
Isaacs
, “
Airfoil theory for flows of variable velocity
,”
J. Aeronaut. Sci.
12
,
113
117
(
1945
).
3.
J. M.
Greenberg
, “
Airfoil in sinusoidal motion in a pulsating stream
,”
Technical Report No. 1326
(
NACA
,
1947
).
4.
B. G.
van der Wall
and
J. G.
Leishman
, “
On the influence of time-varying flow velocity on unsteady aerodynamics
,”
J. Am. Helicopter Soc.
39
,
25
36
(
1994
).
5.
J. A.
Miller
and
A. A.
Fejer
, “
Transition phenomena in oscillating boundary layer flows
,”
J. Fluid Mech.
18
,
438
484
(
1964
).
6.
H. J.
Obremski
and
A. A.
Fejer
, “
Transition in oscillating boundary layer flows
,”
J. Fluid Mech.
29
,
93
111
(
1967
).
7.
A. R.
Lambert
and
S.
Yarusevych
, “
Characterization of vortex dynamics in a laminar separation bubble
,”
AIAA J.
55
,
2664
(
2017
).
8.
K. O.
Granlund
,
B.
Monnier
,
M. V.
Ol
, and
D. R.
Williams
, “
Airfoil longitudinal gust response in separated vs. attached flows
,”
Phys. Fluids
26
,
027103
(
2014
).
9.
D.
Greenblatt
, “
Unsteady low-speed wind tunnels
,”
AIAA J.
54
,
1817
1830
(
2016
).
10.
C.
Strangfeld
,
H.
Mueller-Vahl
,
C.
Nayeri
,
C.
Paschereit
, and
D.
Greenblatt
, “
Airfoil in a high amplitude oscillating stream
,”
J. Fluid Mech.
793
,
79
108
(
2016
).
11.
K. O.
Granlund
,
M. V.
Ol
, and
A. R.
Jones
, “
Streamwise oscillation of airfoils into reverse flow
,”
AIAA J.
54
,
1628
1636
(
2016
).
12.
H.
Taha
and
A. S.
Rezaei
, “
Viscous extension of potential-flow unsteady aerodynamics: The lift frequency response problem
,”
J. Fluid Mech.
868
,
141
175
(
2019
).
13.
W.
Zhu
,
M. H.
McCrink
,
J. P.
Bons
, and
J. W.
Gregory
, “
The unsteady Kutta condition on an airfoil in a surging flow
,”
J. Fluid Mech.
893
,
R2
(
2020
).
14.
M. R.
Visbal
and
J. S.
Shang
, “
Investigation of the flow structure around a rapidly pitching airfoil
,”
AIAA J.
27
,
1044
1051
(
1989
).
15.
P. G.
Choudhuri
and
D. D.
Knight
, “
Effects of compressibility, pitch rate, and Reynolds number on unsteady incipient leading-edge boundary layer separation over a pitching airfoil
,”
J. Fluid Mech.
308
,
195
217
(
1996
).
16.
P. G.
Choudhuri
,
D.
Knight
, and
M. R.
Visbal
, “
Two-dimensional unsteady leading-edge separation on a pitching airfoil
,”
AIAA J.
32
,
673
681
(
1994
).
17.
M. H.
Akbari
and
S. J.
Price
, “
Simulation of dynamic stall for a NACA0012 airfoil using a vortex method
,”
J. Fluids Struct.
17
,
855
874
(
2003
).
18.
P.
Wernert
,
W.
Geissler
,
M.
Raffel
, and
J.
Kompenhaus
, “
Experimental and numerical investigations of dynamic stall on a pitching airfoil
,”
AIAA J.
34
,
982
989
(
1996
).
19.
J. L.
Hill
,
S. T.
Shaw
, and
N.
Qin
, “
Investigation of transition modelling for a aerofoil dynamic stall
,” in
Proceedings of the 24th International Congress of Aeronautical Sciences
, Yokohama, Japan,
2004
.
20.
A.
Spentzos
,
G.
Barakos
,
K.
Badcock
,
B.
Richards
,
P.
Wernert
,
S.
Schreck
, and
M.
Raffel
, “
CFD Investigation of 2D and 3D Dynamic Stall
,” in
Proceedings of the AHS 4th Decennial Specialist's Conference on Aeromechanics
, San Francisco, CA,
2004
.
21.
W.
Geissler
and
H.
Haselmeyer
, “
Investigation of dynamic stall onset
,”
Aerosp. Sci. Technol.
10
,
590
600
(
2006
).
22.
A.
Sharma
and
M.
Visbal
, “
Numerical investigation of the effect of airfoil thickness on onset of dynamic stall
,”
J. Fluid Mech.
870
,
870
900
(
2019
).
23.
M. R.
Visbal
and
D. J.
Garmann
, “
Dynamic stall of a finite-aspect-ratio wing
,”
AIAA J.
57
,
962
977
(
2019
).
24.
J. D.
Eldredge
,
C. J.
Wang
, and
M. V.
Ol
, “
A computational study of a canonical pitch-up, pitch-down wing Maneuver
,” AIAA Paper No. AIAA 2009-3687,
2009
.
25.
M. V.
Ol
,
L.
Bernal
,
C. K.
Kang
, and
W.
Shyy
, “
Shallow and deep dynamic stall for flapping low Reynolds number airfoils
,”
Exp. Fluids
46
,
883
901
(
2009
).
26.
J. D.
Eldredge
and
C.
Wang
, “
High-fidelity simulations and low-order modeling of a rapidly pitching plate
,” AIAA Paper No. AIAA 2010-4281,
2010
.
27.
D. J. M.
Gosselin
, “
2D dynamic stall simulations with time-varying freestream representative of helicopter flight
,” M.S. thesis (
Department of Mechanical and Aerospace Engineering
,
2014
).
28.
Z.
Wu
,
G.
Bangga
,
T.
Lutz
,
G.
Kampers
, and
M.
Hölling
, “
Insights into airfoil response to sinusoidal gusty inflow by oscillating vanes
,”
Phys. Fluids
32
,
125107
(
2020
).
29.
N.
Poudel
,
M.
Yu
, and
J. T.
Hrynuk
, “
Computational study on the effects of unsteady freestream on an airfoil performance at low Reynolds numbers
,” AIAA Paper No. 2021-0965,
2021
.
30.
K.
Al-Jaburi
,
D.
Feszty
, and
F.
Nitzsche
, “
A methodology for simulating 2D shock-induced dynamic stall at flight test-based fluctuating freestream
,”
Chin. J. Aeronaut.
32
,
2223
2238
(
2019
).
31.
L.
Shi
,
Y.
Wang
,
A.-C.
Bayeul-Lainé
, and
O.
Coutier-Delgosha
, “
Effect of time-varying freestream on performance and vortex dynamics of forward and reversed pitching airfoils
,”
J. Fluids Struct.
110
,
103508
(
2022
).
32.
D. A.
Cassidy
,
J. R.
Edwards
, and
M.
Tian
, “
An investigation of interface-sharpening schemes for multiphase mixture flows
,”
J. Comput. Phys.
228
,
5628
5649
(
2009
).
33.
P. R.
Spalart
and
S. R.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” AIAA Paper No. AIAA 92-0439,
1992
.
34.
J. R.
Edwards
and
S.
Chandra
, “
Comparison of eddy viscosity–Transport turbulence models for three-dimensional, shock-separated flowfields
,”
AIAA J.
34
,
756
763
(
1996
).
35.
K.
Ramesh
,
A.
Gopalarathnam
,
K.
Granlund
,
M. V.
Ol
, and
J. R.
Edwards
, “
Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding
,”
J. Fluid Mech.
751
,
500
538
(
2014
).
36.
S.
Narsipur
,
A.
Gopalarathnam
, and
J. R.
Edwards
, “
Low-order model for prediction of trailing-edge separation in unsteady flow
,”
AIAA J.
57
,
191
207
(
2019
).
37.
S.
Narsipur
,
A.
Gopalarathnam
, and
J. R.
Edwards
, “
Low-order modeling of airfoils with massively separated flow and leading-edge vortex shedding
,” AIAA Paper No. AIAA 2018-0813,
2018
.
38.
S.
Narsipur
,
P.
Hosangadi
,
A.
Gopalarathnam
, and
J. R.
Edwards
, “
Variation of leading-edge suction during stall for unsteady aerofoil motions
,”
J. Fluid Mech.
900
,
A25
(
2020
).
39.
S.
Sudharsan
,
S.
Narsipur
, and
A.
Sharma
, “
Evaluating dynamic stall onset criteria for mixed and trailing-edge stall
,” AIAA Paper No. AIAA 2022-1983,
2022
.
40.
M. R.
Visbal
, “
Numerical investigation of deep dynamic stall of a plunging airfoil
,”
AIAA J.
49
,
2152
2170
(
2011
).
41.
K.
Granlund
,
M. V.
Ol
, and
L. P.
Bernal
, “
Unsteady pitching flat plates
,”
J. Fluid Mech.
733
,
R5
(
2013
).
You do not currently have access to this content.