The compressible flows past a wavy-axis square cylinder are numerically carried out by means of the large-eddy simulation technique for two different free-stream Mach numbers (M=0.71 and 0.85), which are less than the critical Mach number Mcr (0.9). The Reynolds number based on the side-length of the wavy-axis square cylinder is chosen as 4×105. For comparison, the compressible flows around the corresponding normal square cylinder are also calculated. The control effects and mechanisms are systematically analyzed. Comparing the wavy-axis square cylinder with a normal square cylinder for M=0.71 and 0.85, about 23.5% and 8.1% drag reductions are acquired, respectively, and the fluctuating forces are suppressed significantly. Based on the analysis of drag decomposition, when M<Mcr, the drag reduction related to vortex force prevails over that relevant to compressible effect. Moreover, the wavy-axis square cylinder can also provide the effective control for type C moving shock. The effective drag reduction and suppression of fluctuating force obtained by the wavy-axis square cylinder are closely associated with the higher base-pressure and lower turbulent fluctuations in the near wake, which can be achieved by the strengthened compressibility and waviness effect of shear-layer. However, when M approaches Mcr, the effective flow control from the wavy-axis square cylinder is attenuated due to the competition between strengthened compressibility and the waviness effect of the shear-layer.

1.
H.
Choi
,
W. P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
(
2008
).
2.
Y.
Oguma
,
T.
Yamagata
, and
N.
Fujisawa
, “
Measurement of sound source distribution around a circular cylinder in a uniform flow by combined particle image velocimetry and microphone technique
,”
J. Wind Eng. Ind. Aerodyn.
118
,
1
(
2013
).
3.
B.
Chen
,
X.
Yang
,
G.
Chen
,
X.
Tang
,
J.
Ding
, and
P.
Weng
, “
Numerical study on the flow and noise control mechanism of wavy cylinder
,”
Phys. Fluids
34
,
036108
(
2022
).
4.
D.
Gao
,
Y.
Huang
,
W. L.
Chen
,
G.
Chen
, and
H.
Li
, “
Control of circular cylinder flow via bilateral splitter plates
,”
Phys. Fluids
31
,
057105
(
2019
).
5.
A.
Mishra
,
M.
Hanzla
, and
A.
De
, “
Passive control of the onset of vortex shedding in flow past a circular cylinder using slit
,”
Phys. Fluids
32
,
013602
(
2020
).
6.
P.
Jüstel
,
S.
Röhrborn
,
P.
Frick
,
V.
Galindo
,
T.
Gundrum
,
F.
Chindler
,
F.
Stefani
,
R.
Stepanov
, and
T.
Vogt
, “
Generating a tide-like flow in a cylindrical vessel by electromagnetic forcing
,”
Phys. Fluids
32
,
097105
(
2020
).
7.
H.
Yu
,
Z.
Xu
, and
W. L.
Chen
, “
Attenuation of vortex street by suction through the structured porous surface
,”
Phys. Fluids
33
,
125101
(
2021
).
8.
C.
Zheng
,
T.
Ji
,
F.
Xie
,
X.
Zhang
,
H.
Zheng
, and
Y.
Zheng
, “
From active learning to deep reinforcement learning: Intelligent active flow control in suppressing vortex-induced vibration
,”
Phys. Fluids
33
,
063607
(
2021
).
9.
H.
Du
,
Q.
Zhang
,
Q.
Li
,
W.
Kong
, and
L.
Yang
, “
Drag reduction in cylindrical wake flow using porous material
,”
Phys. Fluids
34
,
045102
(
2022
).
10.
C.
Xu
,
L.
Zhao
, and
J.
Sun
, “
Large-eddy simulation of the compressible flow past a tabbed cylinder
,”
Chin. Sci. Bull.
57
,
3203
(
2012
).
11.
J.
Cai
,
T. L.
Chng
, and
H. M.
Tsai
, “
On vortical flows shedding from a bluff body with a wavy trailing edge
,”
Phys. Fluids
20
,
064102
(
2008
).
12.
J. H.
Jung
and
H. S.
Yoon
, “
Large eddy simulation of flow over a twisted cylinder at a subcritical Reynolds number
,”
J. Fluid Mech.
759
,
579
(
2014
).
13.
A.
Ahmed
and
B.
Bays-Muchmore
, “
Transverse flow over a wavy cylinder
,”
Phys. Fluids A
4
,
1959
(
1992
).
14.
A.
Ahmed
,
M. J.
Khan
, and
B.
Bays-Muchmore
, “
Experimental investigation of a three-dimensional bluff-body wake
,”
AIAA J.
31
,
559
(
1993
).
15.
J. C.
Owen
,
A. A.
Szewczyk
, and
P. W.
Bearman
, “
Suppression of Karman vortex shedding
,”
Phys. Fluids
12
,
S9
(
2000
).
16.
K.
Lam
,
F. H.
Wang
,
J. Y.
Li
, and
R. M. C.
So
, “
Experimental investigation of the mean and fluctuating forces of wavy (varicose) cylinders in a cross-flow
,”
J. Fluids Struct.
19
,
321
(
2004
).
17.
K.
Lam
,
F. H.
Wang
, and
R. M. C.
So
, “
Three-dimensional nature of vortices in the near wake of a wavy cylinder
,”
J. Fluids Struct.
19
,
815
(
2004
).
18.
K.
Lam
and
Y. F.
Lin
, “
Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number
,”
Int. J. Heat Fluid Flow
29
,
1071
(
2008
).
19.
K.
Lam
and
Y. F.
Lin
, “
Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers
,”
J. Fluid Mech.
620
,
195
(
2009
).
20.
K.
Lam
,
Y. F.
Lin
,
L.
Zou
, and
Y.
Liu
, “
Numerical simulation of flows around two unyawed and yawed wavy cylinders in tandem arrangement
,”
J. Fluids Struct.
28
,
135
(
2012
).
21.
Y. F.
Lin
,
H. L.
Bai
,
M. M.
Alam
,
W. G.
Zhang
, and
K.
Lam
, “
Effects of large spanwise wavelength on the wake of a sinusoidal wavy cylinder
,”
J. Fluids Struct.
61
,
392
(
2016
).
22.
K.
Zhang
,
H.
Katsuchi
,
D.
Zhou
,
H.
Yamada
, and
J.
Lu
, “
Large eddy simulation of flow over inclined wavy cylinders
,”
J. Fluids Struct.
80
,
179
(
2018
).
23.
Y. Q.
Zhuang
,
X. J.
Sun
, and
D. G.
Huang
, “
Numerical study of unsteady flows past a rotating wavy cylinder
,”
Eur. J. Mech. B-Fluids
72
,
538
(
2018
).
24.
H. L.
Bai
,
B.
Zhang
, and
T. H.
New
, “
The near wake of a sinusoidal wavy cylinder with a large spanwise wavelength using time-resolved particle image velocimetry
,”
Exp. Fluids
60
,
15
(
2019
).
25.
H. L.
Bai
,
M. M.
Alam
,
N.
Gao
, and
Y. F.
Lin
, “
The near wake of a sinusoidal wavy cylinders: Three-dimensional POD
,”
Int. J. Heat Fluid Flow
75
,
256
(
2019
).
26.
C. Y.
Xu
,
L. W.
Chen
, and
X. Y.
Lu
, “
Large-eddy simulation of the compressible flow past a wavy cylinder
,”
J. Fluid Mech.
665
,
238
(
2010
).
27.
C. Y.
Xu
and
Z. Q.
Ni
, “
Novel characteristics of wavy cylinder in supersonic turbulent flow
,”
Eur. J. Mech. B-Fluids
67
,
158
(
2018
).
28.
C. Y.
Xu
,
Y. T.
Zhang
,
B.
Hou
, and
J. H.
Sun
, “
Numerical investigations of the compressible turbulent flow past wavy-axis cylinder
,”
Fluid Dyn. Res.
51
,
055502
(
2019
).
29.
C. Y.
Xu
,
B.
Hou
,
Z.
Wang
,
Y. T.
Zhang
, and
J. H.
Sun
, “
Effect of Mach number on the compressible flow past a wavy-axis cylinder
,”
Aerosp. Sci. Technol.
104
,
105943
(
2020
).
30.
C. Y.
Xu
,
L. W.
Chen
, and
X. Y.
Lu
, “
Effect of Mach number on transonic flow past a circular cylinder
,”
Chin. Sci. Bull.
54
,
1886
(
2009
).
31.
H.
Jiang
and
L.
Cheng
, “
Flow separation around a square cylinder at low to moderate Reynolds numbers
,”
Phys. Fluids
32
,
044103
(
2020
).
32.
S.
Murakami
,
S.
Iizuka
, and
R.
Ooka
, “
CFD analysis of turbulent flow past square cylinder using dynamic LES
,”
J. Fluids Struct.
13
,
1097
(
1999
).
33.
M.
Minguez
,
C.
Brun
,
R.
Pasquetti
, and
E.
Serre
, “
Experimental and high-order LES analysis of the flow in near-wall region of a square cylinder
,”
Int. J. Heat Fluid Flow
32
,
558
(
2011
).
34.
F. X.
Trias
,
A.
Gorobets
, and
A.
Oliva
, “
Turbulent flow around a square cylinder at Reynolds number 22000: A DNS study
,”
Comput. Fluids
123
,
87
(
2015
).
35.
W.
Bai
,
C. G.
Mingham
,
D. M.
Causon
, and
L.
Qian
, “
Detached eddy simulation of turbulent flow around square and circular cylinders on Cartesian cut cells
,”
Ocean Eng.
117
,
1
(
2016
).
36.
H.
Jiang
and
L.
Cheng
, “
Hydrodynamic characteristics of flow past a square cylinder at moderate Reynolds numbers
,”
Phys. Fluids
30
,
104107
(
2018
).
37.
Y.
Cao
,
T.
Tamura
, and
H.
Kawai
, “
Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder
,”
Comput. Fluids
196
,
104320
(
2020
).
38.
T.
Nakagawa
, “
Vortex shedding behind a square cylinder in transonic flows
,”
J. Fluid Mech.
178
,
303
(
1987
).
39.
G. B.
Jacobs
,
D. A.
Kopriva
, and
F.
Mashayek
, “
Compressible subsonic particle-laden flow over a square cylinder
,”
J. Propul. Power
20
,
353
(
2004
).
40.
L.
Thombi
and
Y.
Nakamura
, “
Passive separation control on a square cylinder at transonic speed
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
45
,
236
(
2003
).
41.
P. W.
Bearman
and
J. C.
Owen
, “
Reduction of bluff body drag and suppression of vortex shedding by the introduction of wavy separation lines
,”
J. Fluids Struct.
12
,
123
(
1998
).
42.
R. M.
Darekar
and
S. J.
Sherwin
, “
Flow past a square-section cylinder with a wavy stagnation face
,”
J. Fluid Mech.
426
,
263
(
2001
).
43.
W.
Xu
,
L. Q.
Zhang
, and
F.
Xu
, “
Numerical study on the suppression of the oscillating wake of a square cylinder by a traveling wave wall
,”
Int. J. Comput. Methods Eng. Sci. Mech.
20
,
48
(
2019
).
44.
Y.
Zheng
,
H.
Rinoshika
, and
A.
Rinoshika
, “
Analyses on flow structures behind a wavy square cylinder based on continuous wavelet transform and dynamic mode decomposition
,”
Ocean Eng.
216
,
108117
(
2020
).
45.
D.
Zhang
,
A.
Rinoshika
,
Y.
Zheng
,
J.
Li
, and
Y.
Zhang
, “
Turbulent flow structures around a wavy square cylinder based on large eddy simulation
,”
Fluid Dyn.
57
,
96
(
2022
).
46.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
,
2746
(
1991
).
47.
M. P.
Martín
,
U.
Piomelli
, and
G. V.
Candler
, “
Subgrid-scale models for compressible large-eddy simulations
,”
Theor. Comput. Fluid Dyn.
13
,
361
(
2000
).
48.
A.
Yoshizawa
, “
Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling
,”
Phys. Fluids
29
,
2152
(
1986
).
49.
L. W.
Chen
,
C. Y.
Xu
, and
X. Y.
Lu
, “
Numerical investigation of the compressible flow past an aerofoil
,”
J. Fluid Mech.
643
,
97
(
2010
).
50.
C. Y.
Xu
,
T.
Zhou
,
C. L.
Wang
, and
J. H.
Sun
, “
Applications of scale-adaptive simulation technique based on one-equation turbulence model
,”
Appl. Math. Mech.
36
,
121
(
2015
).
51.
C. Y.
Xu
,
Z.
Sun
,
Y. T.
Zhang
, and
J. H.
Sun
, “
Improvement of the scale-adaptive simulation technique based on a compensated strategy
,”
Eur. J. Mech. B-Fluids
81
,
1
(
2020
).
52.
C. Y.
Xu
and
J. H.
Sun
, “
Effect of von Karman length scale in scale adaptive simulation approach on the prediction of supersonic turbulent flow
,”
Aerosp. Sci. Technol.
86
,
630
(
2019
).
53.
J. L.
Thomas
and
M. D.
Salas
, “
Far-field boundary conditions for transonic lifting solutions to the Euler equations
,”
AIAA J.
24
,
1074
(
1986
).
54.
P.
Parnaudeau
,
J.
Carlier
,
D.
Heitz
, and
E.
Lamballais
, “
Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900
,”
Phys. Fluids
20
,
085101
(
2008
).
55.
M.
Meyer
,
S.
Hickel
, and
N. A.
Adams
, “
Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow
,”
Int. J. Heat Fluid Flow
31
,
368
(
2010
).
56.
J. Z.
Wu
,
H. Y.
Ma
, and
M. D.
Zhou
,
Vorticity and Vortex Dynamics
(
Springer-Verlag Press
,
Berlin, Germany
,
2006
).
57.
H.
Tijdeman
and
R.
Seebass
, “
Transonic flow past oscillating airfoils
,”
Annu. Rev. Fluid Mech.
12
,
181
(
1980
).
58.
C. W.
Hamman
,
J. C.
Klewicki
, and
R. M.
Kirby
, “
On the Lamb vector divergence in Navier-Stokes flows
,”
J. Fluid Mech.
610
,
261
(
2008
).
59.
M. C.
Thompson
and
K.
Hourigan
, “
The shear-layer instability of a circular cylinder wake
,”
Phys. Fluids
17
,
021702
(
2005
).
60.
S.
Pirozzoli
and
F.
Grasso
, “
Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25
,”
Phys. Fluids
18
,
065113
(
2006
).
61.
Y.
Na
and
P.
Moin
, “
The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation
,”
J. Fluid Mech.
377
,
347
(
1998
).
62.
W. K.
Blake
,
Mechanics of Flow-Induced Sound and Vibration II
(
Academic Press
,
London, United Kingdom
,
1986
).
You do not currently have access to this content.