Dynamics of ethylene autoignition and deflagration-to-detonation transition (DDT) are first numerically investigated in a one-dimensional shock tube using a reduced chemistry including 10 species and 10 reactions. Different combustion modes are investigated through considering various premixed gas equivalence ratios (0.2 2.0) and incident shock wave Mach numbers (1.83.2). Four ignition and DDT modes are observed from the studied cases, i.e., no ignition, deflagration combustion, detonation after reflected shock, and deflagration behind the incident shock. For detonation development behind the reflected shock, three autoignition hot spots are formed. The first one occurs at the wall surface after the re-compression of the reflected shock and contact surface, which further develops to a reaction shock because of “the explosion in the explosion” regime. The other two are off the wall, respectively, caused by the reflected shock/rarefaction wave interaction and reaction induction in the compressed mixture. The last hot spot develops to a reaction wave and couples with the reflected shock after a DDT process, which eventually leads to detonation combustion. For deflagration development behind the reflected shock, the wave interactions, wall surface autoignition hot spot as well as its induction of reaction shock are qualitatively similar to the mode of detonation after incident shock reflection, before the reflected shock/rarefaction wave collision point. However, only one hot spot is induced after the collision, which also develops to a reaction wave but cannot catch up with the reflected shock. For deflagration behind the incident shock, deflagration combustion is induced by the incident shock compression whereas detonation occurs after the shock reflection. The chemical timescale increases after the reflected shock/contact surface collision, whereas decreases behind the incident and reflected shocks, as well as after the reflected shock/rarefaction wave interaction. Therefore, mixture reactivity behind the reflected shock is weakened by the contact surface, but is intensified by the rarefaction wave. The multi-dimensionality characteristics, including reflected shock/boundary layer interactions, reflected shock bifurcation, destabilization, and detonation, are further present in a two-dimensional configuration. Planar autoignition occurs because of reflected shock compression and detonation combustion is formed first in the central region due to the collision of the reflected shock wave/reflected compression wave. The left and right bifurcations of the separation region in the wall boundary layer are then sequentially ignited.

1.
A.
Jach
,
W.
Rudy
,
A.
Pękalski
, and
A.
Teodorczyk
, “
Assessment of detailed reaction mechanisms for reproduction of ignition delay times of C2–C6 alkenes and acetylene
,”
Combust. Flame
206
,
37
50
(
2019
).
2.
A.
Chauvin
,
G.
Jourdan
,
E.
Daniel
,
L.
Houas
, and
R.
Tosello
, “
Experimental investigation of the propagation of a planar shock wave through a two-phase gas–liquid medium
,”
Phys. Fluids
23
,
113301
(
2011
).
3.
G. J.
Sharpe
, “
Shock-induced ignition for a two-step chain-branching kinetics model
,”
Phys. Fluids
14
,
4372
4388
(
2002
).
4.
S.
Udagawa
,
K.
Maeno
,
I.
Golubeva
, and
W.
Garen
, “
Interferometric signal measurement of shock waves and contact surfaces in small scale shock tube
,” in
Shock Waves
(
Springer
,
2009
), pp.
1419
1424
.
5.
J. T.
Peace
and
F. K.
Lu
, “
Detonation-to-shock wave transmission at a contact discontinuity
,”
Shock Waves
28
,
981
992
(
2018
).
6.
H.
Yamashita
,
J.
Kasahara
,
Y.
Sugiyama
, and
A.
Matsuo
, “
Visualization study of ignition modes behind bifurcated-reflected shock waves
,”
Combust. Flame
159
,
2954
2966
(
2012
).
7.
K. P.
Grogan
and
M.
Ihme
, “
Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems
,”
Proc. Combust. Inst.
35
,
2181
2189
(
2015
).
8.
K. P.
Grogan
and
M.
Ihme
, “
Regimes describing shock boundary layer interaction and ignition in shock tubes
,”
Proc. Combust. Inst.
36
,
2927
2935
(
2017
).
9.
O. G.
Penyazkov
,
K. L.
Sevrouk
,
V.
Tangirala
, and
N.
Joshi
, “
High-pressure ethylene oxidation behind reflected shock waves
,”
Proc. Combust. Inst.
32
,
2421
2428
(
2009
).
10.
S.
Saxena
,
M. S. P.
Kahandawala
, and
S. S.
Sidhu
, “
A shock tube study of ignition delay in the combustion of ethylene
,”
Combust. Flame
158
,
1019
1031
(
2011
).
11.
Z.
Wan
,
Z.
Zheng
,
Y.
Wang
,
D.
Zhang
,
P.
Li
, and
C.
Zhang
, “
A shock tube study of ethylene/air ignition characteristics over a wide temperature range
,”
Combust. Sci. Technol.
192
,
2297
2305
(
2020
).
12.
O.
Trass
and
D.
Mackay
, “
Contact surface tailoring in a chemical shock tube
,”
AIAA J.
1
,
2161
2163
(
1963
).
13.
C.
Huang
,
C.
Qi
, and
Z.
Chen
, “
Non-uniform ignition behind a reflected shock and its influence on ignition delay measured in a shock tube
,”
Shock Waves
29
,
957
967
(
2019
).
14.
J.
Melguizo-Gavilanes
and
L.
Bauwens
, “
A comparison between constant volume induction times and results from spatially resolved simulation of ignition behind reflected shocks: implications for shock tube experiments
,”
Shock Waves
23
,
221
231
(
2013
).
15.
J. T.
Lipkowicz
,
I.
Wlokas
, and
A. M.
Kempf
, “
Analysis of mild ignition in a shock tube using a highly resolved 3D-LES and high-order shock-capturing schemes
,”
Shock Waves
29
,
511
521
(
2019
).
16.
J. T.
Lipkowicz
,
D.
Nativel
,
S.
Cooper
,
I.
Wlokas
,
M.
Fikri
,
E.
Petersen
,
C.
Schulz
, and
A. M.
Kempf
, “
Numerical investigation of remote ignition in shock tubes
,”
Flow, Turbul. Combust.
106
,
471
498
(
2021
).
17.
A. D.
Kiverin
,
K. O.
Minaev
, and
I. S.
Yakovenko
, “
Modes of mild ignition in shock tubes: Origins and classification
,”
Combust. Flame
221
,
420
428
(
2020
).
18.
F.
Cobos-Campos
and
J. G.
Wouchuk
, “
Analytic solution for the zero-order postshock profiles when an incident planar shock hits a planar contact surface
,”
Phys. Rev. E
100
,
033107
(
2019
).
19.
D.
Bitondo
,
I. I.
Glass
, and
G. N.
Patterson
, “
One dimensional theory of absorption and amplification of a plane shock wave by a gaseous layer
,” University of Toronto Institute of Aerophysics Report. No. 7,
1950
.
20.
S. G.
Saytzev
and
R. I.
Soloukhin
, “
Study of combustion of an adiabatically-heated gas mixture
,”
Symp. Combust.
8
,
344
347
(
1961
).
21.
B. L.
Wang
,
H.
Olivier
, and
H.
Grönig
, “
Ignition of shock-heated H2–air–steam mixtures
,”
Combust. Flame
133
,
93
106
(
2003
).
22.
V. V.
Voevodsky
and
E. I.
Soloukhin
, “
On the mechanism and explosion limits of hydrogen–oxygen chain self-ignition in shock waves
,”
Symp. Combust.
10
,
279
283
(
1965
).
23.
J. W.
Meyer
and
A. K.
Oppenheim
, “
On the shock-induced ignition of explosive gases
,”
Symp. Combust.
13
,
1153
1164
(
1971
).
24.
Y.
Takano
, “
Numerical simulations for shock-tube experiments of reflected-shock waves in combustible gas
,”
JSME Int. J., Ser. B.
36
,
300
306
(
1993
).
25.
E.
Dziemińska
and
A. K.
Hayashi
, “
Auto-ignition and DDT driven by shock wave-boundary layer interaction in oxyhydrogen mixture
,”
Int. J. Hydrogen Energy
38
,
4185
4193
(
2013
).
26.
E.
Ninnemann
,
B.
Koroglu
,
O.
Pryor
,
S.
Barak
,
L.
Nash
,
Z.
Loparo
,
J.
Sosa
,
K.
Ahmed
, and
S.
Vasu
, “
New insights into the shock tube ignition of H2/O2 at low to moderate temperatures using high-speed end-wall imaging
,”
Combust. Flame
187
,
11
21
(
2018
).
27.
A. D.
Kiverin
and
I. S.
Yakovenko
, “
Evolution of wave patterns and temperature field in shock-tube flow
,”
Phys. Rev. Fluids
3
,
053201
(
2018
).
28.
O.
Pryor
,
S.
Barak
,
B.
Koroglu
,
E.
Ninnemann
, and
S. S.
Vasu
, “
Measurements and interpretation of shock tube ignition delay times in highly CO2 diluted mixtures using multiple diagnostics
,”
Combust. Flame
180
,
63
76
(
2017
).
29.
M.
Figueroa-Labastida
and
A.
Farooq
, “
Simultaneous lateral and endwall high-speed visualization of ignition in a circular shock tube
,”
Combust. Flame
214
,
263
265
(
2020
).
30.
V. V.
Martynenko
,
O. G.
Penyaz'kov
,
K. A.
Ragotner
, and
S. I.
Shabunya
, “
High-temperature ignition of hydrogen and air at high pressures downstream of the reflected shock wave
,”
J. Eng. Phys. Thermophys.
77
,
785
793
(
2004
).
31.
R.
Blumenthal
,
K.
Fieweger
,
K. H.
Komp
, and
G.
Adomeit
, “
Gas dynamic features of self ignition of non diluted fuel/air mixtures at high pressure
,”
Combust. Sci. Technol.
113
,
137
166
(
1996
).
32.
G.
Thomas
, “
Some observations on the initiation and onset of detonation
,”
Philos. Trans. R. Soc. A
370
,
715
739
(
2012
).
33.
Y.
Onishi
, “
On flows behind shock waves reflected from a solid wall
,”
Shock Waves
1
,
293
299
(
1991
).
34.
E. S.
Oran
and
V. N.
Gamezo
, “
Origins of the deflagration-to-detonation transition in gas-phase combustion
,”
Combust. Flame
148
,
4
47
(
2007
).
35.
D. J.
Singh
and
C. J.
Jachimowski
, “
Quasiglobal reaction model for ethylene combustion
,”
AIAA J.
32
,
213
216
(
1994
).
36.
G. L.
Pellett
,
S. N.
Vaden
, and
L. G.
Wilson
, “
Gaseous surrogate hydrocarbons for a HiFIRE scramjet that mimic opposed jet extinction limits for cracked JP fuels
,” in
55th JANNAF Propulsion Meeting
(NASA,
2008
), pp.
12
16
, https://ntrs.nasa.gov/citations/20080020388.
37.
G. J.
Sharpe
and
M.
Short
, “
Ignition of thermally sensitive explosives between a contact surface and a shock
,”
Phys. Fluids
19
,
126102
(
2007
).
38.
S. H.
Lam
and
D. A.
Goussis
, “
The CSP method for simplifying kinetics
,”
Int. J. Chem. Kinet.
26
,
461
486
(
1994
).
39.
T. F.
Lu
,
C. S.
Yoo
,
J. H.
Chen
, and
C. K.
Law
, “
Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: A chemical explosive mode analysis
,”
J. Fluid Mech.
652
,
45
64
(
2010
).
40.
W.
Wu
,
Y.
Piao
,
Q.
Xie
, and
Z.
Ren
, “
Flame diagnostics with a conservative representation of chemical explosive mode analysis
,”
AIAA J.
57
,
1355
1363
(
2019
).
41.
D. A.
Goussis
,
H. G.
Im
,
H. N.
Najm
,
S.
Paolucci
, and
M.
Valorani
, “
The origin of CEMA and its relation to CSP
,”
Combust. Flame
227
,
396
401
(
2021
).
42.
Z.
Luo
,
C. S.
Yoo
,
E. S.
Richardson
,
J. H.
Chen
,
C. K.
Law
, and
T.
Lu
, “
Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow
,”
Combust. Flame
159
,
265
274
(
2012
).
43.
Z.
Huang
,
M.
Zhao
,
Y.
Xu
,
G.
Li
, and
H.
Zhang
, “
Eulerian–Lagrangian modelling of detonative combustion in two-phase gas−droplet mixtures with OpenFOAM: Validations and verifications
,”
Fuel
286
,
119402
(
2021
).
44.
Y.
Uygun
,
S.
Ishihara
, and
H.
Olivier
, “
A high pressure ignition delay time study of 2-methylfuran and tetrahydrofuran in shock tubes
,”
Combust. Flame
161
,
2519
2530
(
2014
).
45.
See https://Blog.Nus.Edu.Sg/Huangwei/Nus-Ryrhocentralfoam-Solver/ for more information about the development and validation of the RYrhoCentralFoam solver.
46.
H.
Zhang
,
M.
Zhao
, and
Z.
Huang
, “
Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM
,”
Fuel
282
,
118812
(
2020
).
47.
C. J.
Greenshields
,
H. G.
Weller
,
L.
Gasparini
, and
J. M.
Reese
, “
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
,”
Int. J. Numer. Methods Fluids
63
,
1
21
(
2010
).
48.
Z.
Huang
,
M.
Zhao
, and
H.
Zhang
, “
Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen
,”
Fuel
264
,
116809
(
2020
).
49.
J.
Crank
and
P.
Nicolson
, “
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
,”
Math. Proc. Cambridge Philos. Soc.
43
,
50
67
(
1947
).
50.
A.
Kurganov
,
S.
Noelle
, and
G.
Petrova
, “
Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations
,”
SIAM J. Sci. Comput.
23
,
707
740
(
2001
).
51.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations
,”
J. Comput. Phys.
160
,
241
282
(
2000
).
52.
P.
Roe
, “
Characteristic-based schemes for the Euler equations
,”
Annu. Rev. Fluid Mech.
18
,
337
365
(
1986
).
53.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis (Imperial College,
London
,
1996
).
54.
E.
Hairer
and
G.
Wanner
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
, 2nd ed. (
Springer
,
1996
), p.
14
.
55.
B.
Mcbride
,
S.
Gordon
, and
M.
Reno
, “
Coefficients for calculating thermodynamic and transport properties of individual species
,” NASA Technical Memorandum No. 4513,
1993
.
56.
C. J.
Jachimowski
, “
An experimental and analytical study of acetylene and ethylene oxidation behind shock waves
,”
Combust. Flame
29
,
55
66
(
1977
).
57.
L.
Zhang
,
J. Y.
Choi
, and
V.
Yang
, “
Supersonic combustion and flame stabilization of coflow ethylene and air with splitter plate
,”
J. Propul. Power
31
,
1242
1255
(
2015
).
58.
B.
Liu
,
G.
He
,
F.
Qin
,
Q.
Lei
,
J.
An
, and
Z.
Huang
, “
Flame stabilization of supersonic ethylene jet in fuel-rich hot coflow
,”
Combust. Flame
204
,
142
151
(
2019
).
59.
J.
Fujii
,
Y.
Kumazawa
,
A.
Matsuo
,
S.
Nakagami
,
K.
Matsuoka
, and
J.
Kasahara
, “
Numerical investigation on detonation velocity in rotating detonation engine chamber
,”
Proc. Combust. Inst.
36
,
2665
2672
(
2017
).
60.
H.
Watanabe
,
A.
Matsuo
,
K.
Matsuoka
,
A.
Kawasaki
, and
J.
Kasahara
, “
Numerical investigation on propagation behavior of gaseous detonation in water spray
,”
Proc. Combust. Inst.
37
,
3617
3626
(
2019
).
61.
H.
Wang
and
A.
Laskin
, “
A comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures
,” Progress Report,
1999
, http://ignis.usc.edu/Mechanisms/C2-C4/c2.pdf.
62.
M.
Zhao
,
Z.
Ren
, and
H.
Zhang
, “
Pulsating detonative combustion in n-heptane/air mixtures under off-stoichiometric conditions
,”
Combust. Flame
226
,
285
301
(
2021
).
63.
W.
Han
,
C.
Wang
, and
C. K.
Law
, “
Pulsation in one-dimensional H2–O2 detonation with detailed reaction mechanism
,”
Combust. Flame
200
,
242
261
(
2019
).
64.
N. M.
Rubtsov
,
The Modes of Gaseous Combustion
, 1st ed. (
Springer
,
2016
).
65.
A. C.
Merkel
and
G.
Ciccarelli
, “
Visualization of lean methane–air ignition behind a reflected shock wave
,”
Fuel
271
,
117617
(
2020
).
66.
T.
Jaravel
,
O.
Dounia
,
Q.
Malé
, and
O.
Vermorel
, “
Deflagration to detonation transition in fast flames and tracking with chemical explosive mode analysis
,”
Proc. Combust. Inst.
38
,
3529
3536
(
2021
).
67.
D. H.
Edwards
,
G. O.
Thomas
, and
T. L.
Williams
, “
Initiation of detonation by steady planar incident shock waves
,”
Combust. Flame
43
,
187
198
(
1981
).
68.
H. R.
Yu
,
B.
Esser
,
M.
Lenartz
, and
H.
Grönig
, “
Gaseous detonation driver for a shock tunnel
,”
Shock Waves
2
,
245
254
(
1992
).
69.
F. K.
Lu
,
D. R.
Wilson
,
R. J.
Bakos
, and
J. I.
Erdos
, “
Recent advances in detonation techniques for high-enthalpy facilities
,”
AIAA J.
38
,
1676
1684
(
2000
).
70.
A.
Sasoh
,
Compressible Fluid Dynamics and Shock Waves
, 1st ed. (
Springer
,
2020
).
71.
A. D.
Kiverin
and
I. S.
Yakovenko
, “
Ignition and detonation onset behind incident shock wave in the shock tube
,”
Combust. Flame
204
,
227
236
(
2019
).
72.
M.
Brouillette
, “
The Richtmyer–Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
468
(
2002
).
73.
F. C.
Campos
and
J. G.
Wouchuk
, “
Analytical scalings of the linear Richtmyer–Meshkov instability when a shock is reflected
,”
Phys. Rev. E
93
,
053111
(
2016
).
74.
F.
Cobos Campos
and
J. G.
Wouchuk
, “
Analytical asymptotic velocities in linear Richtmyer–Meshkov-like flows
,”
Phys. Rev. E
90
,
053007
(
2014
).
75.
Y. S.
Weber
,
E. S.
Oran
,
J. P.
Boris
, and
J. D.
Anderson
, “
The numerical simulation of shock bifurcation near the end wall of a shock tube
,”
Phys. Fluids
7
,
2475
2488
(
1995
).
76.
A.
Khokhlov
,
J.
Austin
,
C.
Bacon
,
S.
Aithal
, and
K.
Riley
, “
Reflected shock bifurcation in a square channel
,” AIAA Paper No. 2011-646,
2011
.
77.
H.
Kleine
,
V. N.
Lyakhov
,
L. G.
Gvozdeva
, and
H.
Grönig
, “
Bifurcation of a reflected shock wave in a shock tube
,” in
Shock Waves
(
Springer
,
1992
), pp.
261
266
.
78.
O.
Penyazkov
and
A.
Skilandz
, “
Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses
,”
Shock Waves
28
,
299
309
(
2018
).
79.
Z.
Huang
and
H.
Zhang
, “
Numerical investigations of mixed supersonic and subsonic combustion modes in a model combustor
,”
Int. J. Hydrogen Energy
45
,
1045
1060
(
2020
).

Supplementary Material

You do not currently have access to this content.