Computational fluid dynamics using the Reynolds-averaged Navier–Stokes (RANS) remains the most cost-effective approach to study wake flows and power losses in wind farms. The underlying assumptions associated with turbulence closures are the biggest sources of errors and uncertainties in the model predictions. This work aims to quantify model-form uncertainties in RANS simulations of wind farms at high Reynolds numbers under neutrally stratified conditions by perturbing the Reynolds stress tensor through a data-driven machine-learning technique. To this end, a two-step feature-selection method is applied to determine key features of the model. Then, the extreme gradient boosting algorithm is validated and employed to predict the perturbation amount and direction of the modeled Reynolds stress toward the limiting states of turbulence on the barycentric map. This procedure leads to a more accurate representation of the Reynolds stress anisotropy. The data-driven model is trained on high-fidelity data obtained from large-eddy simulation of a specific wind farm, and it is tested on two other (unseen) wind farms with distinct layouts to analyze its performance in cases with different turbine spacing and partial wake. The results indicate that, unlike the data-free approach in which a uniform and constant perturbation amount is applied to the entire computational domain, the proposed framework yields an optimal estimation of the uncertainty bounds for the RANS-predicted quantities of interest, including the wake velocity, turbulence intensity, and power losses in wind farms.

1.
E.
Papadis
and
G.
Tsatsaronis
, “
Challenges in the decarbonization of the energy sector
,”
Energy
205
,
118025
(
2020
).
2.
R. J.
Stevens
and
C.
Meneveau
, “
Flow structure and turbulence in wind farms
,”
Annu. Rev. Fluid Mech.
49
,
311
339
(
2017
).
3.
P.
Veers
,
K.
Dykes
,
E.
Lantz
,
S.
Barth
,
C. L.
Bottasso
,
O.
Carlson
,
A.
Clifton
,
J.
Green
,
P.
Green
,
H.
Holttinen
 et al, “
Grand challenges in the science of wind energy
,”
Science
366
(
6464
),
eaau2027
(
2019
).
4.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary Layer Meteorol.
174
(
1
),
1
59
(
2020
).
5.
L.
Vermeer
,
J. N.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
(
6–7
),
467
510
(
2003
).
6.
H.
Xiao
and
P.
Cinnella
, “
Quantification of model uncertainty in RANS simulations: A review
,”
Prog. Aerosp. Sci.
108
,
1
31
(
2019
).
7.
M.
Emory
,
J.
Larsson
, and
G.
Iaccarino
, “
Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
,”
Phys. Fluids
25
(
11
),
110822
(
2013
).
8.
C.
Gorlé
,
C.
Garcia-Sanchez
, and
G.
Iaccarino
, “
Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows
,”
J. Wind Eng. Ind. Aerodyn.
144
,
202
212
(
2015
).
9.
L. F.
Cremades Rey
,
D. F.
Hinz
, and
M.
Abkar
, “
Reynolds stress perturbation for epistemic uncertainty quantification of RANS models implemented in OpenFOAM
,”
Fluids
4
,
113
(
2019
).
10.
C.
García-Sánchez
,
G.
Van Tendeloo
, and
C.
Gorlé
, “
Quantifying inflow uncertainties in RANS simulations of urban pollutant dispersion
,”
Atmos. Environ.
161
,
263
273
(
2017
).
11.
C.
Gorlé
,
S.
Zeoli
,
M.
Emory
,
J.
Larsson
, and
G.
Iaccarino
, “
Epistemic uncertainty quantification for Reynolds-averaged Navier-Stokes modeling of separated flows over streamlined surfaces
,”
Phys. Fluids
31
(
3
),
035101
(
2019
).
12.
S. D.
Hornshøj-Møller
,
P. D.
Nielsen
,
P.
Forooghi
, and
M.
Abkar
, “
Quantifying structural uncertainties in Reynolds-averaged Navier–Stokes simulations of wind turbine wakes
,”
Renewable Energy
164
,
1550
1558
(
2021
).
13.
A.
Eidi
,
R.
Ghiassi
,
X.
Yang
, and
M.
Abkar
, “
Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms
,”
Renewable Energy
179
,
2212
2223
(
2021
).
14.
K.
Duraisamy
,
G.
Iaccarino
, and
H.
Xiao
, “
Turbulence modeling in the age of data
,”
Annu. Rev. Fluid Mech.
51
,
357
377
(
2019
).
15.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
16.
B.
Tracey
,
K.
Duraisamy
, and
J.
Alonso
, “
Application of supervised learning to quantify uncertainties in turbulence and combustion modeling
,” AIAA Paper No. 2013-259,
2013
, p.
259
.
17.
K.
Duraisamy
,
Z. J.
Zhang
, and
A. P.
Singh
, “
New approaches in turbulence and transition modeling using data-driven techniques
,” AIAA Paper No. 2015-1284,
2015
, p.
1284
.
18.
A. P.
Singh
,
S.
Medida
, and
K.
Duraisamy
, “
Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
,”
AIAA J.
55
(
7
),
2215
2227
(
2017
).
19.
C. M.
Legaard
,
T.
Schranz
,
G.
Schweiger
,
J.
Drgoňa
,
B.
Falay
,
C.
Gomes
,
A.
Iosifidis
,
M.
Abkar
, and
P. G.
Larsen
, “
Constructing neural network-based models for simulating dynamical systems
,” arXiv:2111.01495 (
2021
).
20.
S. L.
Brunton
, “
Applying machine learning to study fluid mechanics
,”
Acta Mech. Sin.
37
(
12
),
1718
1726
(
2021
).
21.
R.
Vinuesa
and
S. L.
Brunton
, “
Enhancing computational fluid dynamics with machine learning
,”
Nat. Comput. Sci.
2
(
6
),
358
366
(
2022
).
22.
H.
Xiao
,
J.-L.
Wu
,
S.
Laizet
, and
L.
Duan
, “
Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations
,”
Comput. Fluids
200
,
104431
(
2020
).
23.
M.
Schmelzer
,
R. P.
Dwight
, and
P.
Cinnella
, “
Discovery of algebraic Reynolds-stress models using sparse symbolic regression
,”
Flow Turbul. Combust.
104
(
2
),
579
603
(
2020
).
24.
J.-P.
Li
,
D.-G.
Tang
,
C.
Yi
, and
C.
Yan
, “
Data-augmented turbulence modeling by reconstructing Reynolds stress discrepancies for adverse-pressure-gradient flows
,”
Phys. Fluids
34
(
4
),
045110
(
2022
).
25.
J.
Ling
,
R.
Jones
, and
J.
Templeton
, “
Machine learning strategies for systems with invariance properties
,”
J. Comput. Phys.
318
,
22
35
(
2016
).
26.
M. L.
Kaandorp
and
R. P.
Dwight
, “
Data-driven modelling of the Reynolds stress tensor using random forests with invariance
,”
Comput. Fluids
202
,
104497
(
2020
).
27.
J.-L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
3
(
7
),
074602
(
2018
).
28.
J.-X.
Wang
,
J.
Wu
,
J.
Ling
,
G.
Iaccarino
, and
H.
Xiao
, “
A comprehensive physics-informed machine learning framework for predictive turbulence modeling
,” arXiv:1701.07102 (
2017
).
29.
J.
Ling
and
J.
Templeton
, “
Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty
,”
Phys. Fluids
27
(
8
),
085103
(
2015
).
30.
C.
Jiang
,
R.
Vinuesa
,
R.
Chen
,
J.
Mi
,
S.
Laima
, and
H.
Li
, “
An interpretable framework of data-driven turbulence modeling using deep neural networks
,”
Phys. Fluids
33
(
5
),
055133
(
2021
).
31.
J.
Steiner
,
R.
Dwight
, and
A.
Viré
, “
Data-driven turbulence modeling for wind turbine wakes under neutral conditions
,”
J. Phys.: Conf. Ser.
1618
(
6
),
062051
(
2020
).
32.
Y.
Luan
and
R. P.
Dwight
, “
Influence of turbulence anisotropy on RANS predictions of wind-turbine wakes
,”
J. Phys.: Conf. Ser.
1618
(
6
),
062059
(
2020
).
33.
X. L.
Huang
and
X. I.
Yang
, “
A Bayesian approach to the mean flow in a channel with small but arbitrarily directional system rotation
,”
Phys. Fluids
33
(
1
),
015103
(
2021
).
34.
Z.
Ti
,
X. W.
Deng
, and
H.
Yang
, “
Wake modeling of wind turbines using machine learning
,”
Appl. Energy
257
,
114025
(
2020
).
35.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Cluster-based probabilistic structure dynamical model of wind turbine wake
,”
J. Turbul.
22
(
8
),
497
516
(
2021
).
36.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes
,”
J. Renewable Sustainable Energy
13
(
2
),
023307
(
2021
).
37.
K.
Duraisamy
, “
Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence
,”
Phys. Rev. Fluids
6
(
5
),
050504
(
2021
).
38.
P. A.
Durbin
, “
Some recent developments in turbulence closure modeling
,”
Annu. Rev. Fluid Mech.
50
,
77
103
(
2018
).
39.
N.
Zehtabiyan-Rezaie
,
A.
Iosifidis
, and
M.
Abkar
, “
Data-driven fluid mechanics of wind farms: A review
,”
J. Renewable Sustainable Energy
14
,
032703
(
2022
).
40.
S. E.
Ahmed
,
S.
Pawar
,
O.
San
,
A.
Rasheed
,
T.
Iliescu
, and
B. R.
Noack
, “
On closures for reduced order models—A spectrum of first-principle to machine-learned avenues
,”
Phys. Fluids
33
(
9
),
091301
(
2021
).
41.
N.
Geneva
and
N.
Zabaras
, “
Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks
,”
J. Comput. Phys.
383
,
125
147
(
2019
).
42.
J. F.
Heyse
,
A. A.
Mishra
, and
G.
Iaccarino
, “
Estimating RANS model uncertainty using machine learning
,”
J. Glob. Power Propul. Soc.
2021
,
1
14
.
43.
H. F.
Oztop
,
K. S.
Mushatet
, and
İ.
Yilmaz
, “
Analysis of turbulent flow and heat transfer over a double forward facing step with obstacles
,”
Int. Commun. Heat Mass Transfer
39
(
9
),
1395
1403
(
2012
).
44.
T.-H.
Shih
,
W. W.
Liou
,
A.
Shabbir
,
Z.
Yang
, and
J.
Zhu
, “
A new kϵ eddy viscosity model for high Reynolds number turbulent flows
,”
Comput. Fluids
24
(
3
),
227
238
(
1995
).
45.
N.
Ali
,
N.
Hamilton
,
G.
Cortina
,
M.
Calaf
, and
R. B.
Cal
, “
Anisotropy stress invariants of thermally stratified wind turbine array boundary layers using large eddy simulations
,”
J. Renewable Sustainable Energy
10
(
1
),
013301
(
2018
).
46.
N.
Ali
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Classification of the Reynolds stress anisotropy tensor in very large thermally stratified wind farms using colormap image segmentation
,”
J. Renewable Sustainable Energy
11
(
6
),
063305
(
2019
).
47.
E. H.
Camp
and
R. B.
Cal
, “
Low-dimensional representations and anisotropy of model rotor versus porous disk wind turbine arrays
,”
Phys. Rev. Fluids
4
(
2
),
024610
(
2019
).
48.
E.
Kreyszig
,
H.
Kreyszig
, and
E. J.
Norminton
,
Advanced Engineering Mathematics
, 10th ed. (
Wiley
,
2011
).
49.
S.
Banerjee
,
R.
Krahl
,
F.
Durst
, and
C.
Zenger
, “
Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
,”
J. Turbul.
8
,
N32
(
2007
).
50.
G.
Iaccarino
,
A. A.
Mishra
, and
S.
Ghili
, “
Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
,”
Phys. Rev. Fluids
2
(
2
),
024605
(
2017
).
51.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
52.
M. P.
van der Laan
and
M.
Abkar
, “
Improved energy production of multi-rotor wind farms
,”
J. Phys.: Conf. Ser.
1256
(
1
),
012011
(
2019
).
53.
D.
Hargreaves
and
N. G.
Wright
, “
On the use of the kε model in commercial CFD software to model the neutral atmospheric boundary layer
,”
J. Wind Eng. Ind. Aerodyn.
95
(
5
),
355
369
(
2007
).
54.
J. H.
Ferziger
,
M.
Perić
, and
R. L.
Street
,
Computational Methods for Fluid Dynamics
(
Springer
,
2002
), Vol.
3
.
55.
C.
Canuto
,
M.
Hussaini
,
A.
Quarteroni
, and
T.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer
,
1988
).
56.
R. J.
Stevens
,
J.
Graham
, and
C.
Meneveau
, “
A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms
,”
Renewable Energy
68
,
46
50
(
2014
).
57.
C.
Moeng
, “
A large-eddy simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
46
,
2311
2330
(
1989
).
58.
X. I.
Yang
and
M.
Abkar
, “
A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers
,”
J. Fluid Mech.
842
,
354
380
(
2018
).
59.
F.
Porté-Agel
,
Y. T.
Wu
,
H.
Lu
, and
R. J.
Conzemius
, “
Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
,”
J. Wind Eng. Ind. Aerodyn.
99
(
4
),
154
168
(
2011
).
60.
M.
Abkar
and
F.
Porté-Agel
, “
The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms
,”
Energies
6
,
2338
2361
(
2013
).
61.
Y. T.
Wu
and
F.
Porté-Agel
, “
Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm
,”
Renewable Energy
75
,
945
955
(
2015
).
62.
M.
Abkar
and
F.
Porté-Agel
, “
Influence of atmospheric stability on wind turbine wakes: A large-eddy simulation study
,”
Phys. Fluids
27
(
3
),
035104
(
2015
).
63.
M.
Bastankhah
and
M.
Abkar
, “
Multirotor wind turbine wakes
,”
Phys. Fluids
31
(
8
),
085106
(
2019
).
64.
R.
Guo
,
Z.
Zhao
,
T.
Wang
,
G.
Liu
,
J.
Zhao
, and
D.
Gao
, “
Degradation state recognition of piston pump based on ICEEMDAN and XGBoost
,”
Appl. Sci.
10
(
18
),
6593
(
2020
).
65.
T.
Chen
and
C.
Guestrin
, “
Xgboost: A scalable tree boosting system
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
Association for Computing Machinery
,
2016
), pp.
785
794
.
66.
J. H.
Friedman
, “
Greedy function approximation: A gradient boosting machine
,”
Ann. Stat.
29
,
1189
1232
(
2001
).
67.
D.
Zhang
,
L.
Qian
,
B.
Mao
,
C.
Huang
,
B.
Huang
, and
Y.
Si
, “
A data-driven design for fault detection of wind turbines using random forests and XGBoost
,”
IEEE Access
6
,
21020
21031
(
2018
).
68.
S.
Purohit
,
E.
Ng
,
I.
Fazil
, and
S. A.
Kabir
, “
Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake
,”
Renewable Energy
184
,
405
420
(
2022
).
69.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
70.
P. R.
Spalart
, “
Philosophies and fallacies in turbulence modeling
,”
Prog. Aerosp. Sci.
74
,
1
15
(
2015
).
71.
J. L.
Lumley
, “
Toward a turbulent constitutive relation
,”
J. Fluid Mech.
41
(
2
),
413
434
(
1970
).
72.
Y.
Yin
,
P.
Yang
,
Y.
Zhang
,
H.
Chen
, and
S.
Fu
, “
Feature selection and processing of turbulence modeling based on an artificial neural network
,”
Phys. Fluids
32
(
10
),
105117
(
2020
).
73.
J.
Tan
,
X.
He
,
G.
Rigas
, and
M.
Vahdati
, “
Towards explainable machine-learning-assisted turbulence modeling for transonic flows
,” in
Proceedings of the 14th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
(
European Turbomachinery Society
,
2021
), p.
ETC2021
-
490
.
74.
L.
Zhu
,
W.
Zhang
,
J.
Kou
, and
Y.
Liu
, “
Machine learning methods for turbulence modeling in subsonic flows around airfoils
,”
Phys. Fluids
31
(
1
),
015105
(
2019
).
75.
M.
Thomas
and
A. T.
Joy
,
Elements of Information Theory
(
Wiley-Interscience
,
2006
).
76.
B. C.
Ross
, “
Mutual information between discrete and continuous data sets
,”
PLoS One
9
(
2
),
e87357
(
2014
).
77.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
78.
J.
Bergstra
and
Y.
Bengio
, “
Random search for hyper-parameter optimization
,”
J. Mach. Learn. Res.
13
(
2
),
281
305
(
2012
).
79.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
(
1
),
5
32
(
2001
).
80.
H.
Drucker
,
C.
Burges
,
L.
Kaufman
,
A.
Smola
, and
V.
Vapnik
, “
Linear support vector regression machines
,”
Adv. Neural Inf. Process. Syst.
9
,
155
161
(
1996
).
You do not currently have access to this content.