Fully resolved numerical simulations with finite rate chemical reactions and detailed molecular diffusion have been conducted for a series of laminar premixed hydrogen–air flames under atmospheric condition. The objective of the work is to study the influence of unsteadiness of the flow on the local and global flame dynamics. Two equivalence ratios with Φ=0.5 and 4 are considered, leading to a negative and a positive Markstein number Ma0 at steady-state condition. The flames are excited with oscillating inflows at pre-defined frequencies f to assess the effect of unsteady flame stretch on flame dynamics. The Damköhler number, defined by the ratio of the inverse frequency of the oscillations and flame transit time, is used to characterize the interactions between the flow and the chemical reactions based on their time scales. For both lean and rich flame conditions, the local flame speed Sl is less sensitive to the flame stretch in an unsteady flow, which results in a reduced magnitude of the Markstein number |Ma¯|. In addition, |Ma¯| is smallest when the time scale of the flow approaches the intrinsic time scale of the flame (Da1). The global consumption speed St, computed from integration of the fuel burning rate over the whole computational domain, yields a phase delay and a damped oscillation with respect to the unsteady inflow. The phase delay increases with f or decreasing Da, whereas the reverse trend has been found for the oscillation amplitude of St. The flame is not able to follow the unsteady flow or adjust its flame surface at high excitation frequencies with Da <1, and vice versa in the low frequency range with Da1. An efficiency factor E has been introduced to model the damped response of the flame due to flow unsteadiness, which reproduces the asymptotic behavior of E0 at Da1 and E1 at Da1. The simulation results reveal that the fluctuation time scale plays a significant role in elucidating the effect of flame–flow interaction, which should be considered for turbulent combustion modeling.

1.
J.
Chen
and
H.
Im
, “
Correlation of flame speed with stretch in turbulent premixed methane/air flames
,”
Proc. Combust. Inst.
27
,
819
826
(
1998
).
2.
M.
Weiß
,
N.
Zarzalis
, and
R.
Suntz
, “
Experimental study of Markstein number effects on laminar flamelet velocity in turbulent premixed flames
,”
Combust. Flame
154
,
671
691
(
2008
).
3.
P.
Clavin
, “
Dynamic behavior of premixed flame fronts in laminar and turbulent flows
,”
Prog. Energy Combust. Sci.
11
,
1
59
(
1985
).
4.
J.
Sinibaldi
,
C.
Mueller
, and
J.
Driscoll
, “
Local flame propagation speeds along wrinkled, unsteady, stretched premixed flames
,”
Proc. Combust. Inst.
27
,
827
832
(
1998
).
5.
T.
Echekki
and
J.
Chen
, “
Unsteady strain rate and curvature effects in turbulent premixed methane-air flames
,”
Combust. Flame
106
,
184
202
(
1996
).
6.
T.
Echekki
and
J.
Chen
, “
Analysis of the contribution of curvature to premixed flame propagation
,”
Combust. Flame
118
,
308
311
(
1999
).
7.
T.
Zirwes
,
F.
Zhang
,
P.
Habisreuther
,
J.
Denev
, and
H.
Bockhorn
, “
Response of local and global consumption speed to stretch in laminar steady-state flames
,” in
Proceedings of the European Combustion Meeting
(
2017
).
8.
F.
Egolfopoulos
, “
Dynamics and structure of unsteady, strained, laminar premixed flames
,”
Proc. Combust. Inst.
25
,
1365
1373
(
1994
).
9.
H.
Im
and
J.
Chen
, “
Effects of flow transients on the burning velocity of laminar hydrogen/air premixed flames
,”
Proc. Combust. Inst.
28
,
1833
1840
(
2000
).
10.
N.
Fogla
,
F.
Creta
, and
M.
Matalon
, “
The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments
,”
Combust. Flame
175
,
155
169
(
2017
).
11.
F.
Zhang
,
T.
Zirwes
,
P.
Habisreuther
, and
H.
Bockhorn
, “
Effect of unsteady stretching on the flame local dynamics
,”
Combust. Flame
175
,
170
179
(
2017
).
12.
C.
Law
and
C.
Sung
, “
Structure, aerodynamics, and geometry of premixed flamelets
,”
Prog. Energy Combust. Sci.
26
,
459
505
(
2000
).
13.
T.
Zirwes
,
F.
Zhang
,
Y.
Wang
,
P.
Habisreuther
,
J.
Denev
,
Z.
Chen
,
H.
Bockhorn
, and
D.
Trimis
, “
In-situ flame particle tracking based on barycentric coordinates for studying local flame dynamics in pulsating Bunsen flames
,”
Proc. Combust. Inst.
38
(
2
),
2057
2066
(
2021
).
14.
F.
Zhang
,
H.
Bonart
,
T.
Zirwes
,
P.
Habisreuther
,
H.
Bockhorn
, and
N.
Zarzalis
, “
Direct numerical simulation of chemically reacting flows with the public domain code OpenFOAM
,” in
High Performance Computing in Science and Engineering' 14
, edited by
W.
Nagel
,
D.
Kröner
, and
M.
Resch
(
Springer
,
Berlin, Heidelberg
,
2015
), pp.
221
236
.
15.
T.
Zirwes
,
F.
Zhang
,
J.
Denev
,
P.
Habisreuther
, and
H.
Bockhorn
, “
Automated code generation for maximizing performance of detailed chemistry calculations in OpenFOAM
,” in
High Performance Computing in Science and Engineering '17
, edited by
W.
Nagel
,
D.
Kröner
, and
M.
Resch
(
Springer
,
2017
), pp.
189
204
.
16.
T.
Zirwes
,
F.
Zhang
,
P.
Habisreuther
,
M.
Hansinger
,
H.
Bockhorn
,
M.
Pfitzner
, and
D.
Trimis
, “
Quasi-DNS dataset of a piloted flame with inhomogeneous inlet conditions
,”
Flow Turbul. Combust.
104
,
997
1027
(
2020
).
17.
J.
Li
,
Z.
Zhao
,
A.
Kazakov
, and
F.
Dryer
, “
An updated comprehensive kinetic model of hydrogen combustion
,”
Int. J. Chem. Kinet.
36
,
566
575
(
2004
).
18.
T.
Zirwes
,
F.
Zhang
,
J.
Denev
,
P.
Habisreuther
,
H.
Bockhorn
, and
D.
Trimis
, “
Improved vectorization for efficient chemistry computations in OpenFOAM for large scale combustion simulations
,” in
High Performance Computing in Science and Engineering '18
, edited by
W.
Nagel
,
D.
Kröner
, and
M.
Resch
(
Springer
,
2018
), pp.
209
224
.
19.
X.
Wen
,
T.
Zirwes
,
A.
Scholtissek
,
H.
Böttler
,
F.
Zhang
,
H.
Bockhorn
, and
C.
Hasse
, “
Flame structure analysis and composition space modeling of thermodiffusively unstable premixed hydrogen flames–Part I: Atmospheric pressure
,”
Combust. Flame
238
,
111815
(
2022
).
20.
X.
Wen
,
T.
Zirwes
,
A.
Scholtissek
,
H.
Böttler
,
F.
Zhang
,
H.
Bockhorn
, and
C.
Hasse
, “
Flame structure analysis and composition space modeling of thermodiffusively unstable premixed hydrogen flames–Part II: Elevated pressure
,”
Combust. Flame
238
,
111808
(
2022
).
21.
X.
Chen
,
Y.
Wang
,
T.
Zirwes
,
F.
Zhang
,
H.
Bockhorn
, and
Z.
Chen
, “
Heat release rate markers for highly stretched premixed CH4/air and CH4/H2/air flames
,”
Energy Fuels
35
,
13349
13359
(
2021
).
22.
T.
Zirwes
,
F.
Zhang
,
P.
Habisreuther
,
M.
Hansinger
,
H.
Bockhorn
,
M.
Pfitzner
, and
D.
Trimis
, “
Identification of flame regimes in partially premixed combustion from a quasi-DNS dataset
,”
Flow, Turbul. Combust.
106
,
373
404
(
2021
).
23.
T.
Zirwes
,
T.
Häber
,
F.
Zhang
,
H.
Kosaka
,
A.
Dreizler
,
M.
Steinhausen
,
C.
Hasse
,
A.
Stagni
,
D.
Trimis
,
R.
Suntz
, and
H.
Bockhorn
, “
Numerical study of quenching distances for side-wall quenching using detailed diffusion and chemistry
,”
Flow, Turbul. Combust.
106
,
649
679
(
2021
).
24.
T.
Zirwes
,
F.
Zhang
,
T.
Häber
, and
H.
Bockhorn
, “
Ignition of combustible mixtures by hot particles at varying relative speeds
,”
Combust. Sci. Technol.
191
,
178
195
(
2019
).
25.
T.
Häber
,
T.
Zirwes
,
D.
Roth
,
F.
Zhang
,
H.
Bockhorn
, and
U.
Maas
, “
Numerical simulation of the ignition of fuel/air gas mixtures around small hot particles
,”
Z. Phys. Chem.
231
,
1625
1654
(
2017
).
26.
F.
Zhang
,
T.
Zirwes
,
T.
Häber
,
H.
Bockhorn
,
D.
Trimis
, and
R.
Suntz
, “
Near wall dynamics of premixed flames
,”
Proc. Combust. Inst.
38
,
1955
1964
(
2021
).
27.
Y.
Wang
,
H.
Zhang
,
T.
Zirwes
,
F.
Zhang
,
H.
Bockhorn
, and
Z.
Chen
, “
Ignition of dimethyl ether/air mixtures by hot particles: Impact of low temperature chemical reactions
,”
Proc. Combust. Inst.
38
,
2459
2466
(
2021
).
28.
T.
Zirwes
,
F.
Zhang
,
J.
Denev
,
P.
Habisreuther
,
H.
Bockhorn
, and
D.
Trimis
, “
Implementation of Lagrangian surface tracking for high performance computing
,” in
High Performance Computing in Science and Engineering '20
, edited by
W.
Nagel
,
D.
Kröner
, and
M.
Resch
(
Springer
,
2020
).
29.
F.
Zhang
,
T.
Zirwes
,
P.
Habisreuther
, and
H.
Bockhorn
, “
A DNS analysis of the evaluation of heat release rates from chemiluminescence measurements in turbulent combustion
,” in
High Performance Computing in Science and Engineering '16
, edited by
W.
Nagel
,
D.
Kröner
, and
M.
Resch
(
Springer
,
2016
), pp.
229
243
.
30.
S.
Chaudhuri
, “
Life of flame particles embedded in premixed flames interacting with near isotropic turbulence
,”
Proc. Combust. Inst.
35
,
1305
1312
(
2015
).
31.
T.
Zirwes
,
F.
Zhang
, and
H.
Bockhorn
, “
Memory effects of local flame dynamics in turbulent premixed flames
,” in
Proceedings of the Combustion Institute
(
Elsevier
,
2022
), Vol.
39
.
32.
H.
Schmid
,
P.
Habisreuther
, and
W.
Leuckel
, “
A model for calculating heat release in premixed turbulent flames
,”
Combust. Flame
113
,
79
91
(
1998
).
33.
F.
Zhang
,
P.
Habisreuther
,
H.
Bockhorn
,
H.
Nawroth
, and
C.
Paschereit
, “
On prediction of combustion generated noise with the turbulent heat release rate
,”
Combust. Sci. Technol.
99
(
6
),
940
951
(
2013
).
34.
F.
Zhang
,
T.
Zirwes
,
P.
Habisreuther
,
H.
Bockhorn
,
D.
Trimis
,
H.
Nawroth
, and
C.
Paschereit
, “
Impact of combustion modeling on the spectral response of heat release in LES
,”
Combust. Sci. Technol.
191
(
9
),
1520
1540
(
2019
).
35.
F.
Zhang
,
T.
Zirwes
,
P.
Habisreuther
,
N.
Zarzalis
,
H.
Bockhorn
, and
D.
Trimis
, “
Numerical simulations of turbulent flame propagation in a fan-stirred combustion bomb and Bunsen-burner at elevated pressure
,”
Flow, Turbul. Combust.
106
,
925
944
(
2021
).
You do not currently have access to this content.