The negative and positive fluctuations of wall shear stress τx and wall heat flux qw can be related to the wall-attached paired up large-scale velocity and temperature streaks. It is justifiable to infer the spatially paired-up coexistence of those wall flow quantities. The present study aims at testifying this hypothesis. We establish such relations between the negative and positive wall shear stress by exploiting a direct numerical simulation database over heated and cooled walls at the friction Reynolds number of 800 and the Mach number of 2.25. The clustering method is adopted for the search of the in-pair structures. It is found that the τx- and qw-structures are less self-similar for flows over cold walls. As they become wider, the τx-structures are increasingly more streamwise stretched, while the trend is reversed for qw-structures. τx-structures of opposite signs are paired up and aligned in the spanwise directions as the wall-attached streamwise velocity, and are left behind by streamwise rollers. The relative position between qw-structures of opposite signs, on the other hand, is sensitive to the wall temperature. Scrutinizing the statistical structures, we elucidate that such spatial coherence is determined by the meandering of velocity streaks that yields strong streamwise gradients of the streamwise velocity.

1.
A. G.
Kravchenko
,
H.
Choi
, and
P.
Moin
, “
On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers
,”
Phys. Fluids A
5
,
3307
(
1993
).
2.
J.
Sheng
,
E.
Malkiel
, and
J.
Katz
, “
Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer
,”
J. Fluid Mech.
633
,
17
60
(
2009
).
3.
N.
Hutchins
,
J. P.
Monty
,
B.
Ganapathisubramani
,
H. C. H.
Ng
, and
I.
Marusic
, “
Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer
,”
J. Fluid Mech.
673
,
255
285
(
2011
).
4.
P.
Lenaers
,
L.
Qiang
,
G.
Brethouwer
,
P.
Schlatter
, and
R.
Örlü
, “
Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence
,”
Phys. Fluids
24
,
035110
(
2012
).
5.
J. I.
Cardesa
,
J. P.
Monty
,
J.
Soria
, and
M. S.
Chong
, “
The structure and dynamics of backflow in turbulent channels
,”
J. Fluid Mech.
880
,
R3
(
2019
).
6.
C.
Pan
and
Y.
Kwon
, “
Extremely high wall-shear stress events in a turbulent boundary layer
,”
J. Phys. Conf. Ser.
1001
,
012004
(
2018
).
7.
B.
Guerrero
,
M. F.
Lambert
, and
R. C.
Chin
, “
Extreme wall shear stress events in turbulent pipe flows: Spatial characteristics of coherent motions
,”
J. Fluid Mech.
904
,
A18
(
2020
).
8.
C.
Cheng
,
W.
Li
,
A.
Lozano-Durán
, and
H.
Liu
, “
On the structure of streamwise wall-shear stress fluctuations in turbulent channel flows
,”
J. Fluid Mech.
903
,
A29
(
2020
).
9.
F.
Moisy
and
J.
Jiménez
, “
Geometry and clustering of intense structures in isotropic turbulence
,”
J. Fluid Mech.
513
,
111
133
(
2004
).
10.
C.
Cheng
,
W.
Li
,
A.
Lozano-Durán
, and
H.
Liu
, “
Uncovering Townsend's wall-attached eddies in low-Reynolds-number wall turbulence
,”
J. Fluid Mech.
889
,
A29
(
2020
).
11.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
, 2nd ed. (
Cambridge University Press
,
1976
).
12.
J.
Kim
and
P.
Moin
, “
Transport of passive scalars in a turbulent channel flow
,” in
Turbulent Shear Flows 6
(
Springer-Verlag
,
Berlin
,
1989
), pp.
85
96
.
13.
H.
Abe
,
H.
Kawamura
, and
Y.
Matsuo
, “
Surface heat-flux fluctuations in a turbulent channel flow up to Reτ = 1200 and Pr = 0.025 and 0.71
,”
Int. J. Heat Fluid Flow
25
,
404
419
(
2004
).
14.
J.
Kim
and
C.
Lee
, “
Prediction of turbulent heat transfer using convolutional neural networks
,”
J. Fluid Mech.
882
,
A18
(
2020
).
15.
L.
Duan
,
I.
Beekman
, and
M. P.
Martín
, “
Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature
,”
J. Fluid Mech.
655
,
419
445
(
2010
).
16.
M. S.
Shadloo
,
A.
Hadjadj
, and
F.
Hussian
, “
Statistical behavior of supersonic turbulent boundary layers with heat transfer at
M=2,”
Int. J. Heat Fluid Flow
53
,
113
134
(
2015
).
17.
F.
Tong
,
S.
Dong
,
J.
Lai
,
X.
Yuan
, and
X.
Li
, “
Wall shear-stress and wall heat-flux in a supersonic turbulent boundary layers
,”
Phys. Fluids
34
,
015127
(
2022
).
18.
F. M.
White
,
Viscous Fluid Flow
(
McGraw-Hill
,
2006
).
19.
W.
Li
,
Y.
Fan
,
D.
Modesti
, and
C.
Cheng
, “
Decomposition of the mean skin-friction drag in compressible turbulent channel flows
,”
J. Fluid Mech.
875
,
101
123
(
2019
).
20.
Y.
Zhang
,
W.
Bi
,
F.
Hussain
, and
Z.
She
, “
A generalized Reynolds analogy for compressible wall-bounded turbulent flows
,”
J. Fluid Mech.
739
,
392
420
(
2014
).
21.
S.
Pirozzoli
and
M.
Bernardini
, “
Turbulence in supersonic boundary layers at moderate Reynolds number
,”
J. Fluid Mech.
688
,
120
168
(
2011
).
22.
A.
Lozano-Durán
,
O.
Flores
, and
J.
Jiménez
, “
The three-dimensional structure of momentum transfer in turbulent channels
,”
J. Fluid Mech.
694
,
100
130
(
2012
).
23.
S.
Dong
,
A.
Lozano-Durán
,
A.
Sekimoto
, and
J.
Jiménez
, “
Coherent structures in statistically stationary homogeneous shear turbulence
,”
J. Fluid Mech.
816
,
167
208
(
2017
).
24.
K.
Osawa
and
J.
Jimenez
, “
Intense structures of different momentum fluxes in turbulent channels
,”
Phys. Rev. Fluids
3
,
084603
(
2018
).
25.
S.
Dong
,
Y.
Huang
,
X.
Yuan
, and
A.
Lozano-Durán
, “
Wall-layer models for large-eddy simulations
,”
J. Fluid Mech.
892
,
A22
(
2020
).
26.
D.
Dong
,
F.
Tong
,
M.
Yu
,
J.
Chen
,
X.
Yuan
, and
Q.
Wang
, “
Effects of wall temperature on two-point statistics of the fluctuating wall shear stress and heat flux in supersonic turbulent boundary layers
,”
Phys. Fluids
34
,
065114
(
2022
).
27.
S.
Pirozzoli
,
F.
Grasso
, and
T. B.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25
,”
Phys. Fluids
16
,
530
545
(
2004
).
28.
X.
Li
,
D.
Fu
, and
Y.
Ma
, “
Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone
,”
AIAA J.
46
,
2899
2913
(
2008
).
29.
X.
Li
,
D.
Fu
, and
Y.
Ma
, “
Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone with a small angle of attack
,”
Phys. Fluids
22
,
025105
(
2010
).
30.
E. M.
Taylor
,
M.
Wu
, and
M. P.
Martin
, “
Optimization of nonlinear error sources for weighted non-oscillatory methods in direct numerical simulations of compressible turbulence
,”
J. Comput. Phys.
223
,
384
(
2007
).
31.
M.
Wu
and
M. P.
Martin
, “
Direct numerical simulation of supersonic boundary layer over a compressible ramp
,”
AIAA J.
45
,
879
(
2007
).
32.
J. C.
Del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Self-similar vortex clusters in the turbulent logarithmic region
,”
J. Fluid Mech.
561
,
329
358
(
2006
).
33.
O.
Flores
,
J.
Jimenez
, and
J. C.
del Alamo
, “
Vorticity organization in the outer layer of turbulent channels with disturbed walls
,”
J. Fluid Mech.
591
,
145
154
(
2007
).
34.
A.
Lozano-Durán
and
J.
Jiménez
, “
Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascade
,”
J. Fluid Mech.
759
,
432
471
(
2014
).
35.
J. I.
Cardesa
,
A.
Vela-Martín
, and
J.
Jiménez
, “
The turbulent cascade in five dimensions
,”
Science
357
,
782
784
(
2017
).
36.
J.
Hwang
and
H. J.
Sung
, “
Wall-attached structures of velocity fluctuations in a turbulent boundary layer
,”
J. Fluid Mech.
856
,
958
983
(
2018
).
37.
J.
Hwang
and
H. J.
Sung
, “
Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow
,”
Phys. Fluids
31
,
055109
(
2019
).
38.
M.
Yoon
,
J.
Hwang
,
J.
Yang
, and
H. J.
Sung
, “
Wall-attached structures of streamwise velocity fluctuations in an adverse-pressure-gradient turbulent boundary layer
,”
J. Fluid Mech.
885
,
A12
(
2020
).
39.
J.
Jiménez
, “
Coherent structures in wall-bounded turbulence
,”
J. Fluid Mech.
842
,
P1
(
2018
).
40.
R. J.
Adrian
,
C. D.
Meinhart
, and
C.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
41.
R. J.
Adrian
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids.
19
,
041301
(
2007
).
42.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
477
(
2007
).
43.
J. P.
Monty
,
J. A.
Stewart
,
R. C.
Williams
, and
M. S.
Chong
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
156
(
2007
).
44.
K.
Kevin
,
J.
Monty
, and
N.
Hutchins
, “
The meandering behaviour of large-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
865
,
R1
(
2019
).
45.
K.
Kevin
,
J. P.
Monty
, and
N.
Hutchins
, “
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets
,”
J. Fluid Mech.
673
,
180
217
(
2011
).
46.
N.
Hutchins
,
K.
Chauhan
,
I.
Marusic
,
J.
Monty
, and
J.
Klewicki
, “
Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory
,”
Boundary-Layer Meteorol.
145
,
273
306
(
2012
).
47.
C. M.
de Silva
,
D.
Chandran
,
R.
Baidva
,
N.
Hutchins
, and
I.
Marusic
, “
Periodicity of large-scale coherence in turbulent boundary layers
,”
Int. J. Heat Fluid Flow
83
,
108575
(
2020
).
48.
J.
Sillero
,
J.
Jiménez
, and
R. D.
Moser
, “
Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to δ+ 2000
,”
Phys. Fluids
268
,
105109
(
2014
).
49.
W.
Wang
,
C.
Pan
, and
J.
Wang
, “
Energy transfer structures associated with large-scale motions in a turbulent boundary layer
,”
J. Fluid Mech.
906
,
A14
(
2021
).
50.
J.
Jeong
,
F.
Hussain
,
W.
Schoppa
, and
J.
Kim
, “
Coherent structures near the wall in a turbulent channel flow
,”
J. Fluid Mech.
332
,
185
214
(
1997
).
You do not currently have access to this content.