Scouring around bridge piers is a highly nonlinear process making its prediction by deterministic and stochastic models challenging. This study explores the application of inferential models for predictions of bed elevations around bridge piers. The objective is to get a generalized machine learning model with an interpretable structure. The historical data comprise a detailed record of streamflow and bed elevations that were captured by sensors installed at the 5th Street Bridge piers over Ocmulgee River at Macon, GA. We investigate the accuracy and efficiency of various tree-based machine learning algorithms, including a single tree as well as homogeneous ensemble models for simultaneous predictions of bed elevation at multiple sensors installed at piers. The ensemble models were based on bagging and boosting techniques. Special attention is given to balancing between overfitting and underfitting without compromise on the model's robustness. Observation of the performance metrics showed that tree-based models have excellent predictive capacity. It was observed that boosting models, including a gradient based regression model, and adaptive boosting outperformed the bagging model. Among all the models investigated in this study, the adaptive boosting method was observed to be most generalizable. The performance of developed models shows the potential of tree-based ensemble models in providing rapid and robust predictions for complex nonlinear fluid flows.

1.
B.
Kumar
,
A.
Jha
,
V.
Deshpande
, and
G.
Sreenivasulu
, “
Regression model for sediment transport problems using multi-gene symbolic genetic programming
,”
Comput. Electron. Agric.
103
,
82
(
2014
).
2.
K.
Rehman
and
Y. S.
Cho
, “
A novel well-balanced scheme for spatial and temporal bed evolution in rapidly varying flow
,”
J. Hydro-environ. Res.
27
,
87
(
2019
).
3.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
(
2020
).
4.
M.
Zounemat-Kermani
,
E.
Matta
,
A.
Cominola
,
X.
Xia
,
Q.
Zhang
,
Q.
Liang
, and
R.
Hinkelmann
, “
Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects
,”
J. Hydrol.
588
,
125085
(
2020
).
5.
A.
Etemad-Shahidi
and
N.
Ghaemi
, “
Model tree approach for prediction of pile groups scour due to waves
,”
Ocean Eng.
38
,
1522
(
2011
).
6.
J. R.
Quinlan
, “
Induction of decision trees
,”
Mach. Learn.
1
,
81
(
1986
).
7.
M.
Pal
,
N. K.
Singh
, and
N. K.
Tiwari
, “
Pier scour modelling using random forest regression
,”
ISH J. Hydraul. Eng.
19
,
69
(
2013
).
8.
Q.
Zhang
,
X. L.
Zhou
, and
J. H.
Wang
, “
Numerical investigation of local scour around three adjacent piles with different arrangements under current
,”
Ocean Eng.
142
,
625
(
2017
).
9.
X.
Sun
,
Y.
Bi
,
H.
Karami
,
S.
Naini
,
S. S.
Band
, and
A.
Mosavi
, “
Hybrid model of support vector regression and fruitfly optimization algorithm for predicting ski-jump spillway scour geometry
,”
Eng. Appl. Comput. Fluid Mech.
15
,
272
(
2021
).
10.
I.
Ebtehaj
,
M. A.
Sattar Ahmed
,
H.
Bonakdari
, and
A. H.
Zaji
, “
Prediction of scour depth around bridge piers using self-adaptive extreme learning machine
,”
J. Hydroinf.
19
,
207
(
2017
).
11.
H. M.
Azamathulla
,
A. A.
Ghani
,
N. A.
Zakaria
, and
A.
Guven
, “
Genetic programming to predict bridge pier scour
,”
J. Hydraul. Eng.
136
,
165
(
2010
).
12.
S. H.
Hong
and
I.
Abid
, “
Physical model study of bridge contraction scour
,”
KSCE J. Civ. Eng.
20
,
2578
(
2016
).
13.
D. R.
Helsel
and
D. R.
Hirsch
,
Techniques of Water Resources Investigations of the United States Geological Survey: Book 4, Hydrologic Analysis and Interpretation
(US Geological Survey,
2002
).
14.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Assessment of supervised machine learning methods for fluid flows
,”
Theor. Comput. Fluid Dyn.
34
,
497
(
2020
).
15.
A.
Géron
,
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems
(O’Reilly Media, Inc., 2019).
16.
J.
Friedman
,
T.
Hastie
, and
R.
Tibshirani
,
The Elements of Statistical Learning
, Springer Series in Statistics (
Springer
,
New York
,
2001
), Vol.
1
.
17.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
(
1
),
5
(
2001
).
18.
Y.
Freund
and
R. E.
Schapire
, “
A decision-theoretic generalization of on-line learning and an application to boosting
,”
J. Comput. Syst. Sci.
55
,
119
(
1997
).
19.
G.
Rätsch
,
T.
Onoda
, and
K. R.
Müller
, “
Soft margins for adaboost
,”
Mach. Learn.
42
,
287
320
(
2001
).
20.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
É.
Duchesnay
, “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
21.
J. N.
Van Rijn
and
F.
Hutter
, in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
2018
).
22.
P.
Probst
,
M. N.
Wright
, and
A. L.
Boulesteix
, “
Hyperparameters and tuning strategies for random forest
,”
Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
9
,
1
15
(
2019
).
23.
J.
Bergstra
and
Y.
Bengio
, “
Random search for hyper-parameter optimization
,”
J. Mach. Learn. Res.
13
,
281
305
(
2012
).
24.
A. C. I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
Google Books
,
2016
).
25.
R.
Saha
,
J. S.
Lee
, and
S. H.
Hong
, “
The impact of lateral flow contraction on the rock plucking process under sub-critical flow conditions
,”
Earth Surf. Process. Landform.
46
,
2765
2998
(
2021
).
26.
S. H.
Hong
,
T. W.
Sturm
, and
T.
Stoesser
, “
Clear water abutment scour in a compound channel for extreme hydrologic events
,”
J. Hydraul. Eng.
141
,
04015005
(
2015
).
27.
S. O.
Lee
,
I.
Abid
, and
S. H.
Hong
, “
Effect of complex shape of pier foundation exposure on time development of scour
,”
Environ. Fluid Mech.
21
,
103
127
(
2021
).
28.
S. H.
Hong
,
A.
Gotvald
,
T. W.
Sturm
, and
T. M.
M.
, “
Laboratory and field measurements of bridge contraction scour
,” in Proceedings 3rd International Conference on Scour and Erosion (ICSE-3), Amsterdam, The Netherlands (
2006
), pp.
316
321
.
29.
T. W.
Sturm
,
F.
Sotiropoulos
,
M.
Landers
,
T.
Gotvald
,
S. O.
Lee
,
L.
Ge
,
R.
Navarro
, and
C.
Escauriaza
, “Laboratory and 3D numerical modeling with field monitoring of regional bridge scour in Georgia,” Atlanta, GA, Georgia Department of Transportation Final Project, Project 2002 (
2004
).
30.
T. W.
Sturm
,
S. H.
Hong
, and
P.
Hobson
, “
Estimating critical shear stress of bed sediment for improved prediction of bridge contraction scour in Georgia
,” Georgia Department of Transportation, Office of Materials and Research (
2008
).
You do not currently have access to this content.