Direct numerical simulation data obtained from two turbulent, lean hydrogen–air flames propagating in a box are analyzed to explore the influence of combustion-induced thermal expansion on turbulence in unburned gas. For this purpose, Helmholtz–Hodge decomposition is applied to the computed velocity fields. Subsequently, the second-order structure functions conditioned to unburned reactants are sampled from divergence-free solenoidal velocity field or irrotational potential velocity field, yielded by the decomposition. Results show that thermal expansion significantly affects the conditioned potential structure functions not only inside the mean flame brushes but also upstream of them. Upstream of the flames, first, transverse structure functions for transverse potential velocities grow with distance r between sampling points more slowly when compared to the counterpart structure functions sampled from the entire or solenoidal velocity field. Second, the former growth rate depends substantially on the distance from the flame-brush leading edge, even at small r. Third, potential root mean square (rms) velocities increase with the decrease in distance from the flame-brush leading edge and are comparable with solenoidal rms velocities near the leading edge. Fourth, although the conditioned axial and transverse potential rms velocities are always close to one another, thus implying isotropy of the potential velocity field in unburned reactants, the potential structure functions exhibit a high degree of anisotropy. Fifth, thermal expansion effects are substantial even for the solenoidal structure functions and even upstream of a highly turbulent flame. These findings call for development of advanced models of turbulence in flames, which allow for the discussed thermal expansion effects.

1.
B.
Karlovitz
,
D. W.
Denniston
, and
F. E.
Wells
, “
Investigation of turbulent flames
,”
J. Chem. Phys.
19
,
541
(
1951
).
2.
A. C.
Scurlock
and
J. H.
Grover
, “
Propagation of turbulent flames
,”
Proc. Combust. Inst.
4
,
645
(
1953
).
3.
C.
Dopazo
,
L.
Cifuentes
, and
N.
Chakraborty
, “
Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers
,”
Phys. Fluids
29
,
045106
(
2017
).
4.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Combustion-induced local shear layers within premixed flamelets in weakly turbulent flows
,”
Phys. Fluids
30
,
085101
(
2018
).
5.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Does flame-generated vorticity increase turbulent burning velocity?
,”
Phys. Fluids
30
,
081702
(
2018
).
6.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
A direct numerical simulation study of the influence of flame-generated vorticity on reaction-zone-surface area in weakly turbulent premixed combustion
,”
Phys. Fluids
31
,
055101
(
2019
).
7.
A. R.
Varma
,
U.
Ahmed
, and
N.
Chakraborty
, “
Effects of body forces on vorticity and enstrophy evolutions in turbulent premixed flames
,”
Phys. Fluids
33
,
035102
(
2021
).
8.
J. F.
MacArt
and
M. E.
Mueller
, “
Damköhler number scaling of active cascade effects in turbulent premixed combustion
,”
Phys. Fluids
33
,
035103
(
2021
).
9.
N.
Chakraborty
,
C.
Kasten
,
U.
Ahmed
, and
M.
Klein
, “
Evolutions of strain rate and dissipation rate of kinetic energy in turbulent premixed flames
,”
Phys. Fluids
33
,
125132
(
2021
).
10.
A. N.
Lipatnikov
and
J.
Chomiak
, “
Effects of premixed flames on turbulence and turbulent scalar transport
,”
Prog. Energy Combust. Sci.
36
,
1
(
2010
).
11.
V. A.
Sabelnikov
and
A. N.
Lipatnikov
, “
Recent advances in understanding of thermal expansion effects in premixed turbulent flames
,”
Annu. Rev. Fluid Mech.
49
,
91
(
2017
).
12.
N.
Chakraborty
, “
Influence of thermal expansion on fluid dynamics of turbulent premixed combustion and its modeling implications
,”
Flow Turbul. Combust.
106
,
753
(
2021
).
13.
A. M.
Steinberg
,
P. E.
Hamlington
, and
X.
Zhao
, “
Structure and dynamics of highly turbulent premixed combustion
,”
Prog. Energy Combust. Sci.
85
,
100900
(
2021
).
14.
P. E.
Hamlington
,
A. Y.
Poludnenko
, and
E. S.
Oran
, “
Interactions between turbulence and flames in premixed reacting flows
,”
Phys. Fluids
23
,
125111
(
2011
).
15.
B.
Bobbitt
,
S.
Lapointe
, and
G.
Blanquart
, “
Vorticity transformation in high Karlovitz number premixed flames
,”
Phys. Fluids
28
,
015101
(
2016
).
16.
B.
Bobbitt
and
G.
Blanquart
, “
Vorticity isotropy in high Karlovitz number premixed flames
,”
Phys. Fluids
28
,
105101
(
2016
).
17.
S. H. R.
Whitman
,
C. A. Z.
Towery
,
A. Y.
Poludnenko
, and
P. E.
Hamlington
, “
Scaling and collapse of conditional velocity structure functions in turbulent premixed flames
,”
Proc. Combust. Inst.
37
,
2527
(
2019
).
18.
J.
Lee
,
J. F.
MacArt
, and
M. E.
Mueller
, “
Heat release effects on the Reynolds stress budgets in turbulent premixed jet flames at low and high Karlovitz numbers
,”
Combust. Flame
216
,
1
8
(
2020
).
19.
R.
Darragh
,
C. A. Z.
Towery
,
A. Y.
Poludnenko
, and
P. E.
Hamlington
, “
Particle pair dispersion and eddy diffusivity in a high-speed premixed flame
,”
Proc. Combust. Inst.
38
,
2845
(
2021
).
20.
J.
Lee
and
M. E.
Mueller
, “
Closure modeling for the conditional Reynolds stresses in turbulent premixed combustion
,”
Proc. Combust. Inst.
38
,
3031
(
2021
).
21.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
S.
Nishiki
,
H. L.
Dave
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
Dissipation and dilatation rates in premixed turbulent flames
,”
Phys. Fluids
33
,
035112
(
2021
).
22.
A.
Kazbekov
and
A. M.
Steinberg
, “
Flame- and flow-conditioned vorticity transport in premixed swirl combustion
,”
Proc. Combust. Inst.
38
,
2949
(
2021
).
23.
A.
Kazbekov
and
A. M.
Steinberg
, “
Physical space analysis of cross-scale turbulent kinetic energy transfer in premixed swirl flames
,”
Combust. Flame
229
,
111403
(
2021
).
24.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Application of conditioned structure functions to exploring influence of premixed combustion on two-point turbulence statistics
,”
Proc. Combust. Inst.
37
,
2433
(
2019
).
25.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions
,”
J. Fluid Mech.
867
,
45
(
2019
).
26.
P.
Brearley
,
U.
Ahmed
,
N.
Chakraborty
, and
A.
Lipatnikov
, “
Statistical behaviors of conditioned two-point second-order structure functions in turbulent premixed flames in different combustion regimes
,”
Phys. Fluids
31
,
115109
(
2019
).
27.
A. J.
Chorin
and
J. E.
Marsden
,
A Mathematical Introduction to Fluid Mechanics
(
Springer
,
Berlin, Germany
,
1993
).
28.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
N.
Nikitin
,
S.
Nishiki
, and
T.
Hasegawa
, “
Application of Helmholtz-Hodge decomposition and conditioned structure functions to exploring influence of premixed combustion on turbulence upstream of the flame
,”
Proc. Combust. Inst.
38
,
3077
(
2021
).
29.
D. H.
Wacks
,
N.
Chakraborty
,
M.
Klein
,
P. G.
Arias
, and
H. G.
Im
, “
Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis
,”
Phys. Rev. Fluids
1
,
083401
(
2016
).
30.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
A priori DNS study of applicability of flamelet concept to predicting mean concentrations of species in turbulent premixed flames at various Karlovitz numbers
,”
Combust. Flame
222
,
370
(
2020
).
31.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
Prediction of mean radical concentrations in lean hydrogen-air turbulent flames at different Karlovitz numbers adopting a newly extended flamelet-based presumed PDF
,”
Combust. Flame
226
,
248
(
2021
).
32.
H.
Bhatia
,
G.
Norgard
,
V.
Pascucci
, and
P.-T.
Bremer
, “
The Helmholtz-Hodge decomposition—A survey
,”
IEEE Trans. Visual Comput. Graphics
19
,
1386
(
2013
).
33.
H.
Bhatia
,
V.
Pascucci
, and
P.-T.
Bremer
, “
The natural Helmholtz-Hodge decomposition for open-boundary flow analysis
,”
IEEE Trans. Visual Comput. Graphics
20
,
1566
(
2014
).
34.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
N.
Nikitin
,
S.
Nishiki
, and
T.
Hasegawa
, “
Solenoidal and potential velocity fields in weakly turbulent premixed flames
,”
Proc. Combust. Inst.
38
,
3087
(
2021
).
35.
A. S.
Monin
and
A. M.
Yaglom
,
Statistical Fluid Mechanics: Mechanics of Turbulence
(
MIT Press
,
Cambridge, MA
,
1971
), Vol.
2
.
36.
A. N.
Kolmogorov
, “
Local structure of turbulence in an incompressible fluid at very high Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
,
299
(
1941
).
37.
M.
Lesieur
,
O.
Metais
, and
P.
Comte
,
Large-Eddy Simulations of Turbulence
(
Cambridge University Press
,
Cambridge, UK
,
2005
).
38.
M. P.
Burke
,
M.
Chaos
,
Y.
Ju
,
F. L.
Dryer
, and
S. J.
Klippenstein
, “
Comprehensive H2/O2 kinetic model for high‐pressure combustion
,”
Int. J. Chem. Kinet.
44
,
444
(
2012
).
39.
R. S.
Rogallo
, “
Numerical experiments in homogeneous turbulence
,” NASA Technical Memorandum 81315 (NASA Ames Research Center, CA,
1981
).
40.
T.
Passot
and
A.
Pouquet
, “
Numerical simulation of compressible homogeneous flows in the turbulent regime
,”
J. Fluid Mech.
181
,
441
(
1987
).
41.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
42.
Y. B.
Zel'dovich
,
G. I.
Barenblatt
,
V. B.
Librovich
, and
G. M.
Makhviladze
,
The Mathematical Theory of Combustion and Explosions
(
Consultants Bureau
,
New York
,
1985
).
43.
Y. A.
Gostintsev
,
A. G.
Istratov
, and
Y. V.
Shulenin
, “
Self-similar propagation of a free turbulent flame in mixed gas mixtures
,”
Combust. Explos. Shock Waves
24
,
563
(
1988
).
44.
B. D.
Videto
and
D. A.
Santavicca
, “
Flame-turbulence interactions in a freely-propagating, premixed flame
,”
Combust. Sci. Technol.
70
,
47
(
1990
).
45.
J.
Furukawa
,
Y.
Noguchi
,
T.
Hirano
, and
F.
Williams
, “
Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane-air flames
,”
J. Fluid Mech.
462
,
209
(
2002
).
You do not currently have access to this content.