This paper uses a linear stability analysis to investigate instabilities of barotropic and baroclinic jets that satisfy the necessary condition for inerital instabilities within the context of a rotating, stratified Boussinesq model. First, we review the different types of instabilities that can occur in these jets and the conditions that make the jet subject to inertial instability but stable to Rayleigh–Taylor instability. Second, we numerically solve one-dimensional and two-dimensional eigenvalue problems for the linear stability problems and examine the dependence of the growth rates on the Rossby number, Burger number, the aspect ratio, and the Reynolds number. We find that there are two critical Reynolds numbers where there is a transition between what type of instability has the largest growth rate. Finally, we examine the characteristics of inertial instabilities in more detail for three selected parameter sets: a low Reynolds number regime, a high Reynolds number regime, and a regime with low Reynolds number and larger aspect ratio. The most unstable mode in the low Reynolds number regime is a barotropic–baroclinic instability and has a barotropic spatial structure. In contrast, the most unstable mode in the high Reynolds number regime is an inertial instability and its spatial structure is independent of the along-flow direction. Modes with this property are commonly referred to as symmetric instabilities. In the intermediate regime, the flow can be unstable to both barotropic–baroclinic and inertial instabilities, possibly with comparable growth rates.

1.
W. H.
Munk
, “
On the wind-driven ocean circulation
,”
J. Atmos. Sci.
7
,
80
93
(
1950
).
2.
J.
Pedlosky
,
Ocean Circulation Theory
(
Springer Science & Business Media
,
1996
).
3.
T.
Woollings
,
A.
Hannachi
, and
B.
Hoskins
, “
Variability of the North Atlantic eddy-driven jet stream
,”
Q. J. R. Meteorol. Soc.
136
,
856
868
(
2010
).
4.
J. J.
Early
,
R.
Samelson
, and
D. B.
Chelton
, “
The evolution and propagation of quasigeostrophic ocean eddies
,”
J. Phys. Oceanogr.
41
,
1535
1555
(
2011
).
5.
J. L.
Sarmiento
and
K.
Bryan
, “
An ocean transport model for the North Atlantic
,”
J. Geophys. Res.: Oceans
87
,
394
408
, (
1982
).
6.
E. V.
Zabolotskikh
,
L. M.
Mitnik
, and
B.
Chapron
, “
New approach for severe marine weather study using satellite passive microwave sensing
,”
Geophys. Res. Lett.
40
,
3347
3350
, (
2013
).
7.
H.
Aluie
,
M.
Hecht
, and
G. K.
Vallis
, “
Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach
,”
J. Phys. Oceanogr.
48
,
225
244
(
2018
).
8.
R. B.
Scott
and
F.
Wang
, “
Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry
,”
J. Phys. Oceanogr.
35
,
1650
1666
(
2005
).
9.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation
(
Cambridge University Press
,
2006
).
10.
T. J.
Dunkerton
, “
On the inertial stability of the equatorial middle atmosphere
,”
J. Atmos. Sci.
38
,
2354
2364
(
1981
).
11.
B. L.
Hua
,
D. W.
Moore
, and
S. L.
Gentil
, “
Inertial nonlinear equilibration of equatorial flows
,”
J. Fluid Mech.
331
,
345
371
(
1997
).
12.
P. H.
Stone
, “
On non-geostrophic baroclinic stability
,”
J. Atmos. Sci.
23
,
390
400
(
1966
).
13.
P. H.
Stone
, “
On non-geostrophic baroclinic stability: Part II
,”
J. Atmos. Sci.
27
,
721
726
(
1970
).
14.
S. D.
Griffiths
, “
The limiting form of inertial instability in geophysical flows
,”
J. Fluid Mech.
605
,
115
144
(
2008
).
15.
P.
Wang
,
J. C.
McWilliams
, and
C.
Ménesguen
, “
Ageostrophic instability in rotating, stratified interior vertical shear flows
,”
J. Fluid Mech.
755
,
397
428
(
2014
).
16.
M.
Tort
,
B.
Ribstein
, and
V.
Zeitlin
, “
Symmetric and asymmetric inertial instability of zonal jets on the f-plane with complete Coriolis force
,”
J. Fluid Mech.
788
,
274
302
(
2016
).
17.
B.
Ribstein
,
R.
Plougonven
, and
V.
Zeitlin
, “
Inertial versus baroclinic instability of the Beckley jet in continuously stratified rotating fluid
,”
J. Fluid Mech.
743
,
1–31
(
2014
).
18.
G. F.
Carnevale
,
R. C.
Kloosterziel
, and
P.
Orlandi
, “
Inertial and barotropic instabilities of a free current in three-dimensional rotating flow
,”
J. Fluid Mech.
725
,
117
151
(
2013
).
19.
F.
Bouchut
,
B.
Ribstein
, and
V.
Zeitlin
, “
Inertial, barotropic, and baroclinic instabilities of the Bickley jet in two-layer rotating shallow water model
,”
Phys. Fluids
23
,
126601
(
2011
).
20.
M. J.
Molemaker
,
J. C.
McWilliams
, and
W. K.
Dewar
, “
Submesoscale instability and generation of mesoscale anticyclones near a separation of the California undercurrent
,”
J. Phys. Oceanogr.
45
,
613
629
(
2015
).
21.
R.
Plougonven
and
V.
Zeitlin
, “
Nonlinear development of inertial instability in a barotropic shear
,”
Phys. Fluids
21
,
106601
(
2009
).
22.
S. D.
Griffiths
, “
Nonlinear vertical scale selection in equatorial inertial instability
,”
J. Atmos. Sci.
60
,
977
990
(
2003
).
23.
R.
Kloosterziel
,
G.
Carnevale
, and
P.
Orlandi
, “
Inertial instability in rotating and stratified fluids: Barotropic vortices
,”
J. Fluid Mech.
583
,
379
412
(
2007
).
24.
R. C.
Kloosterziel
and
G. F.
Carnevale
, “
Vertical scale selection in inertial instability
,”
J. Fluid Mech.
594
,
249
269
(
2008
).
25.
W. C.
Skamarock
, “
A description of the advanced research WRF version 2
,”
Report No. NCAR/TN-468+STR
(NCAR,
2005
).
26.
B.
Cushman-Roisin
and
M.
Beckers
,
Introduction to Geophysical Fluid Dynamics Physical and Numerical Aspects
(
McGraw-Hill
,
2010
).
27.
E.
Yim
,
P.
Billant
, and
C.
Ménesguen
, “
Stability of an isolated pancake vortex in continuously stratified-rotating fluids
,”
J. Fluid Mech.
801
,
508
553
(
2016
).
28.
W.
Smyth
and
J.
Moum
, “
Shear instability and gravity wave saturation in an asymmetrically stratified jet
,”
Dyn. Atmos. Oceans
35
,
265
294
(
2002
).
29.
M. S.
Lozier
and
M. S. C.
Reed
, “
The influence of topography on the stability of shelf break fronts
,”
J. Phys. Oceanogr.
35
,
1023
1036
(
2005
).
30.
J.
Pedlosky
,
Geophysical Fluid Dynamics
, 2nd ed. (
Springer
,
1987
).
31.
F.
White
,
Fluid Mechanics
, 7th ed. (
Academic Press
,
2011
).
32.
P. K.
Kundu
,
Fluid Mechanics
(
Academic Press
,
1990
).
33.
B. J.
Hoskins
, “
The role of potential vorticity in symmetric stability and instability
,”
Q. J. R. Meteorol. Soc.
100
,
480
482
(
1974
).
34.
M.
Harris
, “
The instability of geophysical flows: Two-layer frontal instabilities and continuously stratified inertial instabilities
,” Ph.D. dissertation (University of Waterloo, 2020), available at https://uwspace.uwaterloo.ca/handle/10012/16289.
35.
E.
Yim
,
A.
Stegner
, and
P.
Billant
, “
Stability criterion for the centrifugal instability of surface intensified anticyclones
,”
J. Phys. Oceanogr.
49
,
827
849
(
2019
).
36.
T.
Radko
and
D.
Lorfeld
, “
Effects of weak planetary rotation on the stability and dynamics of internal stratified jets
,”
Phys. Fluids
30
,
096602
(
2018
).
37.
C.
Ménesguen
,
J.
McWilliams
, and
M. J.
Molemaker
, “
Ageostrophic instability in a rotating stratified interior jet
,”
J. Fluid Mech.
711
,
599
619
(
2012
).
38.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
SIAM
,
Philadelphia
,
2000
).
39.
The MathWorks Inc.
,
MATLAB 9.7.0.1190202 (R2019b)
(
The MathWorks Inc.
,
Natick, MA
,
2018
).
40.
R. B.
Lehoucq
,
D. C.
Sorensen
, and
C.
Yang
,
ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
(
SIAM
,
1998
), Vol.
6
.
41.
Y.
Saad
,
Numerical Methods for Large Eigenvalue Problems
(
The Society for Industrial and Applied Mathematics
,
2011
).
42.
T. J.
Dunkerton
, “
A nonsymmetric equatorial inertial instability
,”
J. Atmos. Sci.
40
,
807
813
(
1983
).
43.
R. C.
Kloosterziel
,
P.
Orlandi
, and
G. F.
Carnevale
, “
Saturation of inertial instability in rotating planar shear flows
,”
J. Fluid Mech.
583
,
413
(
2007
).
44.
M. B.
Monagan
,
K. O.
Geddes
,
K. M.
Heal
,
G.
Labahn
,
S. M.
Vorkoetter
,
J.
Devitt
,
M.
Hansen
,
D.
Redfern
,
K.
Rickard
 et al.,
Maple V Programming Guide: For Release 5
(
Springer Science & Business Media
,
2012
).
You do not currently have access to this content.