Droplet grouping is important in technical applications and in nature where more than one droplet is seen. Despite its relevance for such problems, the fundamentals of the grouping processes are not yet fully understood. Initial conditions that expedite or impede the formation of droplet groups have been studied, but a thorough investigation of the temporal and spatial evolution of the forces at play has not been conducted. In this work, the grouping process in monodisperse droplet streams is examined in detail by direct numerical simulation (DNS), for the first time, using the multiphase code Free Surface 3D. The code framework is based on the volume-of-fluid method and uses the piecewise linear interface calculation method to reconstruct the interface. A method is established to quantify the development and evolving differences of pressure and shear drag forces on each droplet in the stream using the available DNS data. The results show a linear increase in the difference between the forces, where the drag force on the leading droplet is always larger than that on the trailing droplet. A comprehensive parametric study reveals that, on the one hand, large initial inter-droplet separation and small group distances increase grouping time due to reduced difference in the drag coefficients. On the other hand, higher initial Reynolds numbers and larger irregularities in the geometrical arrangement promote droplet grouping. The flow field shows stable wake structures at initial Reynolds numbers of 300 and the onset of vortex shedding at Reynolds numbers of 500, affecting the next pair of droplets, even for larger separation distances.

1.
I. I.
Enagi
,
K. A.
Al-attab
, and
Z. A.
Zainal
, “
Liquid biofuels utilization for gas turbines: A review
,”
Renewable Sustainable Energy Rev.
90
,
43
55
(
2018
).
2.
O.
Schmitz
,
H.
Klingels
, and
P.
Kufner
, “
Aero engine concepts beyond 2030: Part 1—The steam injecting and recovering aero engine
,”
J. Eng. Gas Turbines Power
143
(
2
),
021001
(
2020
).
3.
F.
Aziz
and
A.
Ismail
, “
Spray coating methods for polymer solar cells fabrication: A review
,”
Mater. Sci. Semicond. Processes
39
,
416
425
(
2015
).
4.
Z.
Li
,
W.
Perkins
, and
D.
Cipolla
, “
Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® Technology
,”
Eur. J. Pharm. Biopharm.
166
,
10
18
(
2021
).
5.
E.
Hilz
and
A. W.
Vermeer
, “
Spray drift review: The extent to which a formulation can contribute to spray drift reduction
,”
Crop Prot.
44
,
75
83
(
2013
).
6.
A.
Shafiee
,
E. l
Ghadiri
,
H.
Ramesh
,
C.
Kengla
,
J.
Kassis
,
P.
Calvert
,
D.
Williams
,
A.
Khademhosseini
,
R.
Narayan
,
G.
Forgacs
, and
A.
Atala
, “
Physics of bioprinting
,”
Appl. Phys. Rev.
6
,
021315
(
2019
).
7.
F.
Veron
and
L.
Mieussens
, “
An Eulerian model for sea spray transport and evaporation
,”
J. Fluid Mech.
897
,
A6
(
2020
).
8.
J.
Heinlein
and
U.
Fritsching
, “
Droplet clustering in sprays
,”
Exp. Fluids
40
,
464
472
(
2006
).
9.
S.
Dey
,
S. Z.
Ali
, and
E.
Padhi
, “
Terminal fall velocity: The legacy of Stokes from the perspective of fluvial hydraulics
,”
Proc. R. Soc. A
475
,
20190277
(
2019
).
10.
M.
Stimson
,
G. B.
Jeffery
, and
L. N. G.
Filon
, “
The motion of two spheres in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
111
,
110
116
(
1926
).
11.
J.
Happel
and
R.
Pfeffer
, “
The motion of two spheres following each other in a viscous fluid
,”
AIChE J.
6
,
129
133
(
1960
).
12.
E. H.
Steinberger
,
H. R.
Pruppacher
, and
M.
Neiburger
, “
On the hydrodynamics of pairs of spheres falling along their line of centres in a viscous medium
,”
J. Fluid Mech.
34
,
809
819
(
1968
).
13.
Y.
Geyari
,
J. B.
Greenberg
,
A.
Arad
,
D.
Katoshevski
,
N.
Roth
,
V.
Vaikuntanathan
, and
B.
Weigand
, “
Some new insights into droplet grouping dynamics
,” in
15th Triennial International Conference on Liquid Atomization and Spray Systems
, Edinburgh, UK, 29 August–2 September,
2021
.
14.
I.
Proudman
and
J. R. A.
Pearson
, “
Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder
,”
J. Fluid Mech.
2
,
237
262
(
1957
).
15.
E.
de Botton
,
J. B.
Greenberg
,
A.
Arad
,
D.
Katoshevski
,
V.
Vaikuntanathan
,
M.
Ibach
, and
B.
Weigand
, “
An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method
,”
Appl. Math. Modell.
104
,
486
498
(
2022
).
16.
D.
Katoshevski
, “
Characteristics of spray grouping/non-grouping behavior
,”
Aerosol Air Qual. Res.
6
,
54
66
(
2006
).
17.
H.
Sun
, “
On the vaporization of droplets at elevated pressure
,” Dr.-Ing. dissertation (
University of Stuttgart
,
2006
).
18.
J. F.
Virepinte
,
O.
Adam
,
G.
Lavergne
, and
Y.
Biscos
, “
Droplet spacing on drag measurement and burning rate for isothermal and reacting conditions
,”
J. Propul. Power
15
,
97
102
(
1999
).
19.
J. F.
Virepinte
,
Y.
Biscos
,
P.
Lavergne
,
G.
Marge
, and
G.
Collin
, “
A rectilinear droplet stream in combustion: Droplet and gas phase properties
,”
Combust. Sci. Technol.
150
,
143
159
(
2000
).
20.
N.
Roth
,
B.
Weigand
,
D.
Katoshevski
, and
J.
Greenberg
, “
Basic studies on grouping effects in droplet streams
,” in
Workshop on Droplet Impact Phenomena and Spray Investigations (DIPSI)
, Bergamo, Italy,
2015
.
21.
N.
Roth
,
H.
Gomaa
,
A.
Livne
,
D.
Katoshevski
, and
B.
Weigand
, “
Theoretical and experimental study of grouping effects on droplet streams
,” in
28th European Conference on Liquid Atomization and Spray Systems
,
Valencia, Spain
,
6–8 September
,
2017
.
22.
V.
Vaikuntanathan
,
K.
Amini
,
A.
Arad
,
D.
Katoshevski
,
J. B.
Greenberg
, and
B.
Weigand
, “
Experimental investigations on the grouping behaviour in a mono-disperse droplet stream
,” in
15th Triennial International Conference on Liquid Atomization and Spray Systems
,
Edinburgh, UK
,
29 August–2 September
,
2021
.
23.
D.
Stefanitsis
,
G.
Strotos
,
N.
Nikolopulos
,
E.
Kakaras
, and
M.
Gavaises
, “
Numerical examination of the aerodynamic breakup of droplets in chain formation
,” in
14th Triennial International Conference on Liquid Atomization and Spray Systems
, Chicago, IL, USA, 22–26 July,
2018
.
24.
D.
Stefanitsis
,
I.
Malgarinos
,
G.
Strotos
,
N.
Nikolopoulos
,
E.
Kakaras
, and
M.
Gavaises
, “
Numerical investigation of the aerodynamic breakup of droplets in tandem
,”
Int. J. Multiphase Flow
113
,
289
303
(
2019
).
25.
N.
Balcázar
,
J.
Castro
,
J.
Chiva
, and
A.
Oliva
, “
DNS of falling droplets in a vertical channel
,”
Int. J. Comput. Methods Exp. Meas.
6
,
398
410
(
2017
).
26.
T.
Kotsev
, “
Viscous flow around spherical particles in different arrangements
,”
MATEC Web Conf.
145
,
03008
(
2018
).
27.
B.
Lafaurie
,
C.
Nardone
,
R.
Scardovelli
,
S.
Zaleski
, and
G.
Zanetti
, “
Modelling merging and fragmentation in multiphase flows with SURFER
,”
J. Comput. Phys.
113
,
134
147
(
1994
).
28.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
29.
W. J.
Rider
and
D. B.
Kothe
, “
Reconstructing volume tracking
,”
J. Comput. Phys.
141
,
112
152
(
1998
).
30.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
,
506
517
(
1968
).
31.
G.
Weymouth
and
D. K.-P.
Yue
, “
Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids
,”
J. Comput. Phys.
229
,
2853
2865
(
2010
).
32.
J.
Steigerwald
,
M.
Ibach
,
J.
Reutzsch
, and
B.
Weigand
, “
Towards the numerical determination of the splashing threshold of two-component drop film interactions
,” in
High Performance Computing in Science and Engineering '20
(
Springer
,
2022
), pp.
261
279
.
33.
A.
Schlottke
,
M.
Ibach
,
J.
Steigerwald
, and
B.
Weigand
, “
Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge
,” in
High Performance Computing in Science and Engineering '21
(
Springer
,
2022
).
34.
K.
Eisenschmidt
,
M.
Ertl
,
H.
Gomaa
,
C.
Kieffer-Roth
,
C.
Meister
,
P.
Rauschenberger
,
M.
Reitzle
,
K.
Schlottke
, and
B.
Weigand
, “
Direct numerical simulations for multiphase flows: An overview of the multiphase code FS3D
,”
J. Appl. Math. Comput.
272
,
508
517
(
2016
).
35.
M.
Ibach
,
K.
Schulte
,
V.
Vaikuntanathan
,
A.
Arad
,
D.
Katoshevski
,
J. B.
Greenberg
, and
B.
Weigand
, “
Direct numerical simulations of grouping effects in droplet streams using different boundary conditions
,” in
15th Triennial International Conference on Liquid Atomization and Spray Systems
, Edinburgh, UK, 29 August–2 September,
2021
.
36.
W.
Ren
,
J.
Reutzsch
, and
B.
Weigand
, “
Direct numerical simulation of water droplets in turbulent flow
,”
Fluids
5
,
158
(
2020
).
37.
J.
Qian
and
C. K.
Law
, “
Regimes of coalescence and separation in droplet collision
,”
J. Fluid Mech.
331
,
59
80
(
1997
).
38.
M.
Amiri
and
S.
Mortazavi
, “
Three-dimensional numerical simulation of sedimenting drops inside a vertical channel
,”
Int. J. Multiphase Flow
56
,
40
53
(
2013
).
39.
G.
Brenn
, “
Droplet collision
,” in
Handbook of Atomization and Sprays: Theory and Applications
, edited by
N.
Ashgriz
(
Springer US
,
Boston, MA
,
2011
), pp.
157
181
.
40.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic Press
,
1978
).
41.
C.
Aalburg
,
B.
van Leer
, and
G.
Faeth
, “
Deformation and drag properties of round drops subjected to shock-wave disturbances
,”
AIAA J.
41
,
2371
2378
(
2003
).
42.
G.
Brenn
, “
Flows with interfaces
,” in
Analytical Solutions for Transport Processes: Fluid Mechanics, Heat and Mass Transfer
(
Springer, Berlin/Heidelberg
,
2017
) pp.
123
173
.
43.
L.-P.
Hsiang
and
G.
Faeth
, “
Near-limit drop deformation and secondary breakup
,”
Int. J. Multiphase Flow
18
,
635
652
(
1992
).
44.
L.
Schiller
, “
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
Z. des Vereines Deutscher Ingenieure
77
,
318
321
(
1933
).
45.
M.
Mikhailov
and
A.
Silva Freire
, “
The drag coefficient of a sphere: An approximation using Shanks transform
,”
Powder Technol.
237
,
432
435
(
2013
).
46.
J. F.
Harper
and
D. W.
Moore
, “
The motion of a spherical liquid drop at high Reynolds number
,”
J. Fluid Mech.
32
,
367
391
(
1968
).
47.
Z.-G.
Feng
and
E. E.
Michaelides
, “
Drag coefficients of viscous spheres at intermediate and high Reynolds numbers
,”
J. Fluids Eng.
123
,
841
849
(
2001
).
48.
J.
Mulholland
,
R.
Srivastava
, and
J.
Wendt
, “
Influence of droplet spacing on drag coefficient in nonevaporating, monodisperse streams
,”
AIAA J.
26
,
1231
1237
(
1988
).
49.
J.-F.
Virepinte
, “
Étude du Comportement Dynamique et Thermique de Gouttes en Régime D'interaction Dans le Cas de Jets Rectilignes
,” Doctoral dissertation (
École Nationale Supérieure de L'Aéronautique et de L'Espace
,
Toulouse
,
1999
).
50.
T. A.
Johnson
and
V. C.
Patel
, “
Flow past a sphere up to a Reynolds number of 300
,”
J. Fluid Mech.
378
,
19
70
(
1999
).
51.
H.
Sakamoto
and
H.
Haniu
, “
A study on vortex shedding from spheres in a uniform flow
,”
J. Fluids Eng.
112
,
386
392
(
1990
).
You do not currently have access to this content.