Thermodynamic effects delay the growth of cavitation bubbles and may accumulate to a considerable level in a bubbly cloud. Under thermo-sensitive conditions, due to thermodynamic effects, a bubbly cloud is often believed to behave similarly to a single cavitation bubble with respect to its shape, oscillation, etc. Discrepancies in thermodynamic effects on cavitating flows in previous experimental studies may result from the lack of control of non-dimensional parameter groups under this special condition. In the present paper, we first derive the non-dimensional parameter groups from the dynamics of a single cavitation bubble traveling through a Venturi tube. Among them, three major non-dimensional parameters are proposed for similitude conditions of Venturi cavitation experiments between different liquids, namely, the thermodynamic parameter, the Reynolds number, and the relative cavitation number. Our theory is validated with systematic experiments of Venturi cavitation in water, Freon 113, and fluoroketone in a small-scale closed-circuit cavitation tunnel under well-controlled conditions. Simultaneous high-speed observations from top and front views provide improved measurement of the cavitation characteristics. By comparing the variations of the attached cavity lengths and their oscillation frequencies, we successfully achieve similarities between different working liquids. The results are of particular importance for surrogates, when the original working liquid is too costly or too hazardous, e.g., cryogenic liquid hydrogen LH2 or liquid oxygen LO2.

1.
S.
Li
,
Cavitation of Hydraulic Machinery
(
World Scientific
,
2000
).
2.
J.
Franc
and
J.
Michel
,
Fundamentals of Cavitation
(
Springer Science and Business Media
,
2006
).
3.
C.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2014
).
4.
A.
Stepanoff
, “
Cavitation in centrifugal pumps with liquids other than water
,”
J. Eng. Power
83
,
79
89
(
1961
).
5.
J.
Jakobsen
and
R.
Keller
, “
Liquid rocket engine turbopump inducers
,”
Technical Report No. SP8052
(
NASA
,
1971
).
6.
K.
Kamijo
,
M.
Yoshida
, and
Y.
Tsujimoto
, “
Hydraulic and mechanical performance of LE-7 LOX pump inducer
,”
J. Propul. Power
9
,
819
826
(
1993
).
7.
B.
Schneider
,
A.
Koşar
, and
Y.
Peles
, “
Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels
,”
Int. J. Heat Mass Transfer
50
,
2838
2854
(
2007
).
8.
H.
Stahl
and
A. J.
Stepanoff
, “
Thermodynamic aspects of cavitation in centrifugal pumps
,”
J. Basic Eng.
78
,
1691
1693
(
1956
).
9.
R.
Ruggeri
and
R.
Moore
, “
Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds
,”
Technical Report No.
D-5292 (
National Aeronautics and Space Administration
,
1969
).
10.
J.
Hord
, “
Cavitation in liquid cryogens. IV. Combined correlations for venturi, hydrofoil, ogives, and pumps
,”
Technical Report No.
CR-2448 (
National Aeronautics and Space Administration
,
Lewis Research Center
,
1974
).
11.
D.
Fruman
,
I.
Benmansour
, and
R.
Sery
, “
Estimation of the thermal effects on cavitation of cryogenic liquids
,” in
Cavitation and Multiphase Flow Forum
(
ASME FED
,
1991
), pp.
93
96
.
12.
M.
Plesset
and
S.
Zwick
, “
The growth of vapor bubbles in superheated liquids
,”
J. Appl. Phys.
25
,
493
500
(
1954
).
13.
C.
Brennen
, “
The dynamic behavior and compliance of a stream of cavitating bubbles
,”
J. Fluids Eng.
95
,
533
541
(
1973
).
14.
J.
Franc
,
C.
Rebattet
, and
A.
Coulon
, “
An experimental investigation of thermal effects in a cavitating inducer
,”
J. Fluids Eng.
126
,
716
723
(
2004
).
15.
S.
Watanabe
,
T.
Hidaka
,
H.
Horiguchi
,
A.
Furukawa
, and
Y.
Tsujimoto
, “
Analysis of thermodynamic effects on cavitation instabilities
,”
J. Fluids Eng.
129
,
1123
1130
(
2007
).
16.
H.
Kato
, “
Thermodynamic effect on incipient and developed sheet cavitation
,” in
Proceedings of the International Symposium on Cavitation
(
ASME
,
1984
), pp.
127
136
.
17.
J.
Franc
and
C.
Pellone
, “
Analysis of thermal effects in a cavitating inducer using Rayleigh equation
,”
J. Fluids Eng.
129
,
974
983
(
2007
).
18.
J.
Franc
,
G.
Boitel
,
M.
Riondet
,
É.
Janson
,
P.
Ramina
, and
C.
Rebattet
, “
Thermodynamic effect on a cavitating inducer. I. Geometrical similarity of leading edge cavities and cavitation instabilities
,”
J. Fluids Eng.
132
,
021303
(
2010
).
19.
J.
Franc
,
G.
Boitel
,
M.
Riondet
,
É.
Janson
,
P.
Ramina
, and
C.
Rebattet
, “
Thermodynamic effect on a cavitating inducer. II. On-board measurements of temperature depression within leading edge cavities
,”
J. Fluids Eng.
132
,
021304
(
2010
).
20.
L.
Sarósdy
and
A.
Acosta
, “
Note on observations of cavitation in different fluids
,”
J. Fluids Eng.
83
,
399
400
(
1961
).
21.
J.
Hord
,
L.
Anderson
, and
W.
Hall
, “
Cavitation in liquid cryogens. I. Venturi
,”
Technical Report No.
CR-2054 (
National Aeronautics and Space Administration
,
Lewis Research Center
,
1972
).
22.
J.
Hord
, “
Cavitation in liquid cryogens. II. Hydrofoil
,”
Technical Report No.
CR-2156 (
National Aeronautics and Space Administration
,
Lewis Research Center
,
1973
).
23.
J.
Hord
, “
Cavitation in liquid cryogens. III. Ogives
,”
Technical Report No.
CR-2242 (
National Aeronautics and Space Administration
,
Lewis Research Center
,
1973
).
24.
A.
Cervone
,
C.
Bramanti
,
E.
Rapposelli
, and
L.
d'Agostino
, “
Thermal cavitation experiments on a NACA 0015 hydrofoil
,”
J. Fluids Eng.
128
,
326
331
(
2006
).
25.
J.
Gustavsson
,
K.
Denning
, and
C.
Segal
, “
Hydrofoil cavitation under strong thermodynamic effect
,”
J. Fluids Eng.
130
,
091303
(
2008
).
26.
S.
Kelly
, “
Experiments in thermosensitive cavitation of a cryogenic rocket propellant surrogate
,” Ph.D. thesis (
The University of Florida
,
2012
).
27.
M.
de Giorgi
,
A.
Ficarella
, and
M.
Tarantino
, “
Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization
,”
Int. J. Heat Fluid Flow
39
,
160
172
(
2013
).
28.
T.
Chen
,
Z.
Mu
,
B.
Huang
,
M.
Zhang
, and
G.
Wang
, “
Dynamic instability analysis of cavitating flow with liquid nitrogen in a converging-diverging nozzle
,”
Appl. Therm. Eng.
192
,
116870
(
2021
).
29.
T.
Chen
,
H.
Chen
,
W.
Liu
,
B.
Huang
, and
G.
Wang
, “
Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode
,”
Appl. Therm. Eng.
156
,
63
76
(
2019
).
30.
S.
Watanabe
,
K.
Enomoto
,
Y.
Yamamoto
, and
Y.
Hara
, “
Thermal and dissolved gas effects on cavitation in a 2-D convergent-divergent nozzle flow
,” in
Proceedings of the 4th Joint U.S.-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
(
American Society of Mechanical Engineers Digital Collection
,
2014
).
31.
H.
Zhang
,
Z.
Zuo
,
K.
Mørch
, and
S.
Liu
, “
Thermodynamic effects on venturi cavitation characteristics
,”
Phys. Fluids
31
,
097107
(
2019
).
32.
J.
Zhu
,
S.
Wang
, and
X.
Zhang
, “
Influences of thermal effects on cavitation dynamics in liquid nitrogen through venturi tube
,”
Phys. Fluids
32
,
012105
(
2020
).
33.
J.
Holl
and
G.
Wislicenus
, “
Scale effects on cavitation
,”
J. Basic Eng.
83
,
385
395
(
1961
).
34.
A.
Keller
, “
Cavitation scale effects-empirically found relations and the correlation of cavitation number and hydrodynamic coefficients
,” in
Proceedings of the 4th International Symposium on Cavitation (CAV2001)
(
2001
).
35.
P.
Pelz
,
T.
Keil
, and
T.
Groß
, “
The transition from sheet to cloud cavitation
,”
J. Fluid Mech.
817
,
439
454
(
2017
).
36.
Y.
Iga
,
T.
Furusawa
, and
H.
Sasaki
, “
Interaction between thermodynamic suppression effect and Reynolds number promotion effect on cavitation in hot water
,” in
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
(ASME Press,
2018
), pp.
576
580
.
37.
T.
Chen
,
H.
Chen
,
W.
Liang
,
B.
Huang
, and
L.
Xiang
, “
Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition
,”
Int. J. Heat Mass Transfer
132
,
618
630
(
2019
).
38.
A.
Danlos
,
F.
Ravelet
,
O.
Coutier-Delgosha
, and
F.
Bakir
, “
Cavitation regime detection through proper orthogonal decomposition: Dynamics analysis of the sheet cavity on a grooved convergent–divergent nozzle
,”
Int. J. Heat Fluid Flow
47
,
9
20
(
2014
).
39.
P.
Tomov
,
S.
Khelladi
,
F.
Ravelet
,
C.
Sarraf
,
F.
Bakir
, and
P.
Vertenoeuil
, “
Experimental study of aerated cavitation in a horizontal venturi nozzle
,”
Exp. Therm. Fluid Sci.
70
,
85
95
(
2016
).
40.
M.
Dular
,
B.
Bachert
,
B.
Stoffel
, and
B.
Širok
, “
Relationship between cavitation structures and cavitation damage
,”
Wear
257
,
1176
1184
(
2004
).
41.
C.
Brennen
,
Hydrodynamics of Pumps
(
Cambridge University Press
,
2011
).
42.
M.
Callenaere
,
J.
Franc
,
J.-M.
Michel
, and
M.
Riondet
, “
The cavitation instability induced by the development of a re-entrant jet
,”
J. Fluid Mech.
444
,
223
(
2001
).
43.
M.
Dular
,
I.
Khlifa
,
S.
Fuzier
,
M.
Maiga
, and
O.
Coutier-Delgosha
, “
Scale effect on unsteady cloud cavitation
,”
Exp. Fluids
53
,
1233
1250
(
2012
).
44.
Z.
Wang
,
H.
Cheng
, and
B.
Ji
, “
Euler–lagrange study of cavitating turbulent flow around a hydrofoil
,”
Phys. Fluids
33
,
112108
(
2021
).
45.
G.
Zhang
,
I.
Khlifa
, and
O.
Coutier-Delgosha
, “
A comparative study of quasi-stable sheet cavities at different stages based on fast synchrotron x-ray imaging
,”
Phys. Fluids
32
,
123316
(
2020
).
46.
H.
Ganesh
, “
Bubbly shock propagation as a cause of sheet to cloud transition of partial cavitation and stationary cavitation bubbles forming on a delta wing vortex
,” Ph.D. thesis (University of Michigan,
2015
).
47.
H.
Ganesh
,
S.
Mäkiharju
, and
S.
Ceccio
, “
Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities
,”
J. Fluid Mech.
802
,
37
(
2016
).
48.
Q.
Le
,
J.
Franc
, and
J.-M.
Michel
, “
Partial cavities: Global behavior and mean pressure distribution
,”
J. Fluids Eng.
115
,
243
248
(
1993
).
49.
Y.
Kawanami
,
H.
Kato
,
H.
Yamaguchi
,
M.
Tanimura
, and
Y.
Tagaya
, “
Mechanism and control of cloud cavitation
,”
J. Fluids Eng.
119
,
788
794
(
1997
).
50.
C.
Stanley
,
T.
Barber
, and
G.
Rosengarten
, “
Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice
,”
Int. J. Heat Fluid Flow
50
,
169
176
(
2014
).
51.
S.
Jahangir
,
W.
Hogendoorn
, and
C.
Poelma
, “
Dynamics of partial cavitation in an axisymmetric converging-diverging nozzle
,”
Int. J. Multiphase Flow
106
,
34
45
(
2018
).
52.
J.
Zhu
,
H.
Xie
,
K.
Feng
,
X.
Zhang
, and
M.
Si
, “
Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube
,”
Int. J. Heat Mass Transfer
112
,
544
552
(
2017
).
53.
E.
Lemmon
, “
Reference fluid thermodynamic and transport properties (REFPROP)
,” NIST Standard Reference Database 23,
2007
.
54.
K.
Kikuta
,
Y.
Yoshida
,
T.
Hashimoto
,
H.
Nanri
,
T.
Mizuno
, and
N.
Shimiya
, “
Influence of rotational speed on thermodynamic effect in a cavitating inducer
,” in
Proceedings of the Fluids Engineering Division Summer Meeting
(
ASME
,
2009
), pp.
77
83
.
55.
C.
Stanley
,
T.
Barber
,
B.
Milton
, and
G.
Rosengarten
, “
Periodic cavitation shedding in a cylindrical orifice
,”
Exp. Fluids
51
,
1189
1200
(
2011
).
56.
S.
Prothin
,
J.-Y.
Billard
, and
H.
Djeridi
, “
Image processing using proper orthogonal and dynamic mode decompositions for the study of cavitation developing on a NACA0015 foil
,”
Exp. Fluids
57
,
157
(
2016
).
57.
B.
Stutz
and
J.-L.
Reboud
, “
Two-phase flow structure of sheet cavitation
,”
Phys. Fluids
9
,
3678
3686
(
1997
).
58.
M.
Kjeldsen
,
R.
Arndt
, and
M.
Effertz
, “
Spectral characteristics of sheet/cloud cavitation
,”
J. Fluids Eng.
122
,
481
487
(
2000
).
59.
H.
Zhang
, “
Investigations on the influence of the themodynamic effect on the Venturi cavitating flow
,” Ph.D. thesis (
Tsinghua University
,
2020
).
60.
G.
Zhang
,
I.
Khlifa
,
K.
Fezzaa
,
M.
Ge
, and
O.
Coutier-Delgosha
, “
Experimental investigation of internal two-phase flow structures and dynamics of quasi-stable sheet cavitation by fast synchrotron x-ray imaging
,”
Phys. Fluids
32
,
113310
(
2020
).
61.
K.
Sato
,
Y.
Taguchi
, and
S.
Hayashi
, “
High speed observation of periodic cavity behavior in a convergent-divergent nozzle for cavitating water jet
,”
J. Flow Control Meas. Visualization
01
,
102
(
2013
).
62.
S.
Hayashi
and
K.
Sato
, “
Unsteady behavior of cavitating waterjet in an axisymmetric convergent-divergent nozzle: High speed observation and image analysis based on frame difference method
,”
J. Flow Control Meas. Visualization
02
,
94
104
(
2014
).
63.
K.
Sato
,
Y.
Wada
,
Y.
Noto
, and
Y.
Sugimoto
, “
Reentrant motion in cloud cavitation due to cloud collapse and pressure wave propagation
,” in
Proceedings of the Fluids Engineering Division Summer Meeting
(
ASME
,
2010
), pp.
7
11
.
64.
K.
Sato
,
N.
Takahashi
, and
Y.
Sugimoto
, “
Effects of diffuser length on cloud cavitation in an axisymmetrical convergent-divergent nozzle
,” in
Proceedings of the ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
(
American Society of Mechanical Engineers
,
2015
).
You do not currently have access to this content.