Numerical simulations of the bubble-bursting phenomenon in two tandem bubbles at the free surface are conducted to explore the influence of a following bubble behind the bursting bubble on the jet ejection at fixed Bo = 0.05 and Oh = 0.022. The equivalent radius of the bursting bubble (RB) is fixed, and the configuration of two tandem bubbles is varied systematically by changing the equivalent radius of the following bubble (RF) and the gap distance between the two bubbles (L). An increase in the bubble–bubble interactive force (repulsive force) is observed with a decrease in L or an increase in RF. As the repulsive force increases, the velocity of the primary capillary wave (PCW) increases due to the reduced wavelength of the PCW, thus increasing the bursting jet velocity. However, when the repulsive force is sufficiently large, the curvature of the PCW near the bottom of the bursting bubble is reversed, causing a new secondary capillary wave to be generated. An increase in the secondary capillary wavelength with an increase in the force disturbs the self-similar behavior of the interface of the bursting bubble, resulting in a decrease in the bursting jet velocity. In order to scale the bursting jet velocity using RF and L in cases where PCWs are important to induce a bursting jet, a scaling law is formulated by defining the scaling variable φ in terms of RF and L. The proposed scaling law is found to be capable of providing accurate predictions of capillary numbers as a function of φ.

1.
Andreae
,
M. O.
and
Rosenfeld
,
D.
, “
Aerosol–cloud–precipitation interactions. I. The nature and sources of cloud-active aerosols
,”
Earth Sci. Rev.
89
,
13
41
(
2008
).
2.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
, “
Integration of Navier-Stokes equations using dual time stepping and a multigrid method
,”
AIAA J.
33
(
6
),
985
990
(
1995
).
3.
Baylor
,
E. R.
,
Peters
,
V.
, and
Baylor
,
M. B.
, “
Water-to-air transfer of virus
,”
Science
197
,
763
764
(
1977
).
4.
Blanco–Rodríguez
,
F. J.
and
Gordillo
,
J. M.
, “
On the jets produced by drops impacting a deep liquid pool and by bursting bubbles
,”
J. Fluid Mech.
916
,
A37
(
2021
).
5.
Boulton-Stone
,
J. M.
and
Blake
,
J. R.
, “
Gas bubbles bursting at a free surface
,”
J. Fluid Mech.
254
,
437
466
(
1993
).
6.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
(
2
),
335
354
(
1992
).
7.
Chen
,
K. H.
,
Miao
,
Y. B.
,
Shang
,
C. Y.
,
Huang
,
T. Y.
,
Yu
,
Y. T.
,
Yeh
,
C. N.
,
Song
,
H. L.
,
Chen
,
C. T.
,
Mi
,
F. L.
,
Lin
,
K. J.
, and
Sung
,
H. W.
, “
A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats
,”
Biomaterials
255
,
120157
(
2020
).
8.
Chorin
,
A. J.
, “
A numerical method for solving incompressible viscous flow problems
,”
J. Comput. Phys.
135
(
2
),
118
125
(
1997
).
9.
Deike
,
L.
,
Ghabache
,
E.
,
Liger-Belair
,
G.
,
Das
,
A. K.
,
Zaleski
,
S.
,
Popinet
,
S.
, and
Seon
,
T.
, “
Dynamics of jets produced by bursting bubbles
,”
Phys. Rev. Fluids
3
(
1
),
013603
(
2018
).
10.
De Leeuw
,
G.
,
Andreas
,
E. L.
,
Anguelova
,
M. D.
,
Fairall
,
C. W.
,
Lewis
,
E. R.
,
O'Dowd
,
C.
,
Schulz
,
M.
, and
Schwartz
,
S. E.
, “
Production flux of sea spray aerosol
,”
Rev. Geophys.
49
,
RG2001
, (
2011
).
11.
Duchemin
,
L.
,
Popinet
,
S.
,
Josserand
,
C.
, and
Zaleski
,
S.
, “
Jet formation in bubbles bursting at a free surface
,”
Phys. Fluids
14
(
9
),
3000
3008
(
2002
).
12.
Gañán-Calvo
,
A. M.
, “
Revision of bubble bursting: Universal scaling laws of top jet drop size and speed
,”
Phys. Rev. Lett.
119
(
20
),
204502
(
2017
).
13.
Gañán-Calvo
,
A. M.
, “
Scaling laws of top jet drop size and speed from bubble bursting including gravity and inviscid limit
,”
Phys. Rev. Fluids
3
(
9
),
091601
(
2018
).
14.
Ghabache
,
E.
,
Antkowiak
,
A.
,
Josserand
,
C.
, and
Seon
,
T.
, “
On the physics of fizziness: How bubble bursting controls droplets ejection
,”
Phys. Fluids
26
(
12
),
121701
(
2014
).
15.
Ghabache
,
E.
and
Seon
,
T.
, “
Size of the top jet drop produced by bubble bursting
,”
Phys. Rev. Fluids
1
(
5
),
051901(R)
(
2016
).
16.
Gordillo
,
J. M.
and
Rodríguez-Rodríguez
,
J.
, “
Capillary waves control the ejection of bubble bursting jets
,”
J. Fluid Mech.
867
,
556
571
(
2019
).
17.
Ha
,
C.-T.
and
Lee
,
J. H.
, “
A modified monotonicity preserving high-order scheme with application to computation of multi-phase flows
,”
Comput. Fluids
197
,
104345
(
2020
).
18.
Harper
,
J. F.
, “
On bubbles rising in line at large Reynolds numbers
,”
J. Fluid Mech.
41
(
4
),
751
758
(
1970
).
19.
Krishnan
,
S.
,
Hopfinger
,
E. J.
, and
Puthenveettil
,
B. A.
, “
On the scaling of jetting from bubble collapse at a liquid surface
,”
J. Fluid Mech.
822
,
791
812
(
2017
).
20.
Kumaran
,
V.
and
Koch
,
D. L.
, “
The effect of hydrodynamic interactions on the averaged properties of a bidisperse suspension of high Reynolds number, low Reynolds number bubbles
,”
Phys. Fluids A
5
(
5
),
1123
1134
(
1993
).
21.
Kusuno
,
H.
,
Yamamoto
,
H.
, and
Sanada
,
T.
, “
Lift force acting on a pair of clean bubbles rising in-line
,”
Phys. Fluids
31
(
7
),
072105
(
2019
).
22.
Lai
,
C. Y.
,
Eggers
,
J.
, and
Deike
,
L.
, “
Bubble bursting: Universal cavity and jet profiles
,”
Phys. Rev. Lett.
121
(
14
),
144501
(
2018
).
23.
Lamb
,
H.
, Hydrodynamics, 6th ed. (
Cambridge University Press
,
1932
).
24.
Liger-Belair
,
G.
and
Jeandet
,
P.
, “
Capillary-driven flower-shaped structures around bubbles collapsing in a bubble raft at the surface of a liquid of low viscosity
,”
Langmuir
19
(
14
),
5771
5779
(
2003
).
25.
Macintyre
,
F.
, “
Flow patterns in breaking bubbles
,”
J. Geophys. Res.
77
(
27
),
5211
5228
, (
1972
).
26.
Milne-Thomson
,
L. M.
,
Theoretical Hydrodynamics
, 5th ed. (
Dover
,
1996
).
27.
Néel
,
B.
and
Deike
,
L.
, “
Collective bursting of free-surface bubbles, and the role of surface contamination
,”
J. Fluid Mech.
917
,
A46
(
2021
).
28.
Peregrine
,
D. H.
, “
Water-wave impact on walls
,”
Annu. Rev. Fluid Mech.
35
(
1
),
23
43
(
2003
).
29.
Singh
,
D.
and
Das
,
A. K.
, “
Numerical investigation of the collapse of a static bubble at the free surface in the presence of neighbors
,”
Phys. Rev. Fluids
4
(
2
),
023602
(
2019
).
30.
Toba
,
Y.
, “
Drop production by bursting of air bubbles on the sea surface (II) theoretical study on the shape of floating bubbles
,”
J. Oceanogr. Soc. Jpn.
15
(
3
),
121
130
(
1959
).
31.
Veron
,
F.
, “
Ocean spray
,”
Annu. Rev. Fluid Mech.
47
,
507
538
(
2015
).
32.
Walls
,
P.
,
Henaux
,
L.
, and
Bird
,
J.
, “
Jet drops from bursting bubbles: How gravity and viscosity couple to inhibit droplet production
,”
Phys. Rev. E
92
(
2
),
021002(R)
(
2015
).
33.
Watanabe
,
M.
and
Sanada
,
T.
, “
In-line motion of a pair of bubbles in a viscous liquid
,”
JSME Int. J. Ser. B
49
(
2
),
410
418
(
2006
).
34.
Weiss
,
J. M.
and
Smith
,
W. A.
, “
Preconditioning applied to variable and constant density flows
,”
AIAA J.
33
(
11
),
2050
2057
(
1995
).
35.
Yang
,
Z. Q.
,
Tian
,
Y. S.
, and
Thoroddsen
,
S. T.
, “
Multitude of dimple shapes can produce singular jets during the collapse of immiscible drop-impact craters
,”
J. Fluid Mech.
904
,
A19
(
2020
).
36.
Zeff
,
B. W.
,
Kleber
,
B.
,
Fineberg
,
J.
, and
Lathrop
,
D. P.
, “
Singularity dynamics in curvature collapse and jet eruption on a fluid surface
,”
Nature
403
(
6768
),
401
404
(
2000
).
37.
Zenit
,
R.
and
Rodríguez-Rodríguez
,
J.
, “
The fluid mechanics of bubbly drinks
,”
Phys. Today
71
(
11
),
44
50
(
2018
).
You do not currently have access to this content.