A pseudopotential multicomponent lattice Boltzmann (LB) model that can account for the real buoyancy effect is proposed to simulate the mass transfer process around a rising bubble. The density profiles at the equilibrium state are determined based on the hydrostatic condition and the zero diffusion flux condition (the balance of chemical potential). Compared with the LB models using effective buoyancy force, the proposed model has three advantages: (1) avoiding the unrealistic distribution of gas components within the bubble due to the upward effective buoyancy force, (2) removing the undesirable diffusion process due to the application of effective buoyancy force, and (3) considering the effect of the pressure gradient on the change of bubble size. In addition, Henry's law, which can be automatically recovered from the multicomponent LB equation, is re-interpreted from the perspective of the balance of chemical potential. Simulation results showed that the diffusion flux non-uniformly distributes over the surface of a rising bubble. The diffusion zone primarily occurs at the top and the lateral side of a rising bubble, whereas the diffusion transport just below the rising bubble is much less significant than its counterpart above the rising bubble. Various bubble shapes and their corresponding diffusion zones have been obtained. Moreover, the correlation between the Sherwood number and the Peclet number derived from the simulation results is consistent with those from previous numerical results. Thus, the proposed LB model is capable of conducting a quantitative analysis of the mass transfer around a rising bubble.

1.
D.
Deising
,
D.
Bothe
, and
H.
Marschall
, “
Direct numerical simulation of mass transfer in bubbly flows
,”
Comput. Fluids
172
,
524
537
(
2018
).
2.
A.
Panda
,
H. V.
Patel
,
E. A. J. F.
Peters
,
M. W.
Baltussen
, and
J. A. M.
Kuipers
, “
A multiple resolution approach using adaptive grids for fully resolved boundary layers on deformable gas-liquid interfaces at high Schmidt numbers
,”
Chem. Eng. Sci.
227
,
115900
(
2020
).
3.
X.
Frank
,
N.
Dietrich
,
J.
Wu
,
R.
Barraud
, and
H. Z.
Li
, “
Bubble nucleation and growth in fluids
,”
Chem. Eng. Sci.
62
,
7090
7097
(
2007
).
4.
O. R.
Enríquez
,
C.
Hummelink
,
G.-W.
Bruggert
,
D.
Lohse
,
A.
Prosperetti
,
D.
Van Der Meer
, and
C.
Sun
, “
Growing bubbles in a slightly supersaturated liquid solution
,”
Rev. Sci. Instrum.
84
,
065111
(
2013
).
5.
H.
Jia
,
X.
Xiao
, and
Y.
Kang
, “
Investigation of a free rising bubble with mass transfer by an arbitrary Lagrangian–Eulerian method
,”
Int. J. Heat Mass Transfer
137
,
545
557
(
2019
).
6.
Y.
Jin
and
M.
Schlüter
, “
Direct numerical simulation of the interfacial mass transfer of a bubble in self-induced turbulent flows
,”
Int. J. Heat Mass Transfer
135
,
1248
1259
(
2019
).
7.
X.
Li
,
G.
Chen
,
P.
Zhang
,
W.
Wang
, and
J.
Li
, “
Quantitative analysis for the effects of internal flow on mass transfer processes inside rising bubbles
,”
Phys. Fluids
31
,
117107
(
2019
).
8.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method
(
Springer International Publishing
,
2017
), Vol.
10
, pp.
4
15
.
9.
K.
Sankaranarayanan
,
X.
Shan
,
I. G.
Kevrekidis
, and
S.
Sundaresan
, “
Bubble flow simulations with the lattice Boltzmann method
,”
Chem. Eng. Sci.
54
,
4817
4823
(
1999
).
10.
A.
Gupta
and
R.
Kumar
, “
Lattice Boltzmann simulation to study multiple bubble dynamics
,”
Int. J. Heat Mass Transfer
51
,
5192
5203
(
2008
).
11.
Z.
Yu
and
L.-S.
Fan
, “
Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow
,”
Phys. Rev. E
82
,
046708
(
2010
).
12.
X.
Frank
,
D.
Funfschilling
,
N.
Midoux
, and
H. Z.
Li
, “
Bubbles in a viscous liquid: Lattice Boltzmann simulation and experimental validation
,”
J. Fluid Mech.
546
,
113
122
(
2005
).
13.
N.
Takada
,
M.
Misawa
,
A.
Tomiyama
, and
S.
Fujiwara
, “
Numerical simulation of two- and three-dimensional two-phase fluid motion by lattice Boltzmann method
,”
Comput. Phys. Communications
129
,
233
246
(
2000
).
14.
G.-Q.
Chen
,
X.
Huang
,
A.-M.
Zhang
, and
S.-P.
Wang
, “
Simulation of three-dimensional bubble formation and interaction using the high-density-ratio lattice Boltzmann method
,”
Phys. Fluids
31
,
027102
(
2019
).
15.
S.
Anwar
, “
Lattice Boltzmann modeling of buoyant rise of single and multiple bubbles
,”
Comput. Fluids
88
,
430
439
(
2013
).
16.
S.
Anwar
, “
Three-dimensional modeling of coalescence of bubbles using lattice Boltzmann model
,”
Comput. Fluids
184
,
178
186
(
2019
).
17.
A.
Zhang
,
Z.
Guo
,
Q.
Wang
, and
S.
Xiong
, “
Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-Boltzmann study
,”
Phys. Fluids
31
,
063106
(
2019
).
18.
T.
Mitchell
,
C.
Leonardi
, and
A.
Fakhari
, “
Development of a three-dimensional phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios
,”
Int. J. Multiphase Flow
107
,
1
15
(
2018
).
19.
D.
Bhaga
and
M. E.
Weber
, “
Bubbles in viscous liquids: Shapes, wakes and velocities
,”
J. Fluid Mech.
105
,
61
85
(
1981
).
20.
Z.
Yu
and
L.-S.
Fan
, “
An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation
,”
J. Comput. Phys.
228
,
6456
6478
(
2009
).
21.
R.
Davies
and
G. I.
Taylor
, “
The mechanics of large bubbles rising through extended liquids and through liquids in tubes
,”
Proc. R. Soc. London, Ser. A
200
,
375
390
(
1950
).
22.
F.
Liang-Shih
and
K.
Tsuchiya
,
Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions
(
Butterworth-Heinemann
,
2013
).
23.
L.
Amaya-Bower
and
T.
Lee
, “
Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method
,”
Comput. Fluids
39
,
1191
1207
(
2010
).
24.
X.
Shan
and
G.
Doolen
, “
Diffusion in a multicomponent lattice Boltzmann equation model
,”
Phys. Rev. E
54
,
3614
(
1996
).
25.
J.
Lu
,
H.
Lei
, and
C.
Dai
, “
Analysis of Henry's law and a unified lattice Boltzmann equation for conjugate mass transfer problem
,”
Chem. Eng. Sci.
199
,
319
331
(
2019
).
26.
J.-Y.
Yang
,
X.-Y.
Dai
,
Q.-H.
Xu
,
Z.-Y.
Liu
,
L.
Shi
, and
W.
Long
, “
Lattice Boltzmann modeling of interfacial mass transfer in a multiphase system
,”
Phys. Rev. E
104
,
015307
(
2021
).
27.
Z.
Tan
,
H.
Yan
,
R.
Huang
,
L.
Liu
, and
Q.
Li
, “
Phase-field lattice Boltzmann method for the simulation of gas–liquid mass transfer
,”
Chem. Eng. Sci.
253
,
117539
(
2022
).
28.
X.
Shan
and
G.
Doolen
, “
Multicomponent lattice-Boltzmann model with interparticle interaction
,”
J. Stat. Phys.
81
,
379
393
(
1995
).
29.
X.
He
,
J.
Zhang
,
Q.
Yang
,
H.
Peng
, and
W.
Xu
, “
Dissolution process of a single bubble under pressure with a large-density-ratio multicomponent multiphase lattice Boltzmann model
,”
Phys. Rev. E
102
,
063306
(
2020
).
30.
X.
He
,
Q.
Yang
,
H.
Peng
, and
J.
Zhang
, “
Non-condensable gas bubble dissolution with a modified tunable surface tension multicomponent lattice Boltzmann model
,”
Comput. Fluids
233
,
105252
(
2022
).
31.
M. L.
Porter
,
E.
Coon
,
Q.
Kang
,
J.
Moulton
, and
J.
Carey
, “
Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios
,”
Phys. Rev. E
86
,
036701
(
2012
).
32.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
33.
Q.
Li
,
K.
Luo
, and
X.
Li
, “
Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model
,”
Phys. Rev. E
87
,
053301
(
2013
).
34.
Q.
Li
,
K. H.
Luo
, and
X.
Li
, “
Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows
,”
Phys. Rev. E
86
,
016709
(
2012
).
35.
Q.
Li
,
K. H.
Luo
,
Q. J.
Kang
,
Y. L.
He
,
Q.
Chen
, and
Q.
Liu
, “
Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
,”
Prog. Energy Combust. Sci.
52
,
62
105
(
2016
).
36.
L.
Chen
,
Q.
Kang
,
Y.
Mu
,
Y.-L.
He
, and
W.-Q.
Tao
, “
A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications
,”
Int. J. Heat Mass Transfer
76
,
210
236
(
2014
).
37.
L.
Shen
,
G.
Tang
,
Q.
Li
, and
Y.
Shi
, “
Hybrid wettability-induced heat transfer enhancement for condensation with noncondensable gas
,”
Langmuir
35
,
9430
9440
(
2019
).
38.
P.
Yuan
and
L.
Schaefer
, “
Equations of state in a lattice Boltzmann model
,”
Phys. Fluids
18
,
042101
(
2006
).
39.
Y.
Hou
,
H.
Deng
,
Q.
Du
, and
K.
Jiao
, “
Multi-component multi-phase lattice Boltzmann modeling of droplet coalescence in flow channel of fuel cell
,”
J. Power Sources
393
,
83
91
(
2018
).
40.
Q.
Li
and
K.
Luo
, “
Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows
,”
Phys. Rev. E
88
,
053307
(
2013
).
41.
M. R.
Swift
,
E.
Orlandini
,
W.
Osborn
, and
J.
Yeomans
, “
Lattice Boltzmann simulations of liquid–gas and binary fluid systems
,”
Phys. Rev. E
54
,
5041
(
1996
).
42.
B.
Wen
,
X.
Zhou
,
B.
He
,
C.
Zhang
, and
H.
Fang
, “
Chemical-potential-based lattice Boltzmann method for nonideal fluids
,”
Phys. Rev. E
95
,
063305
(
2017
).
43.
Z.
Qiao
,
X.
Yang
, and
Y.
Zhang
, “
Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng–Robinson equation of state
,”
Phys. Rev. E
98
,
023306
(
2018
).
44.
G.
Zhao-Li
,
Z.
Chu-Guang
, and
S.
Bao-Chang
, “
Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method
,”
Chin. Phys.
11
,
366
(
2002
).
45.
R.-F.
Qiu
,
A.-L.
Wang
,
Q.-W.
Gong
, and
T.
Jiang
, “
Simulation of expanding bubble through a hole in a channel driven by pressure using lattice Boltzmann method
,”
Comput. Math. Appl.
70
,
244
253
(
2015
).
46.
K.
Küllmer
,
A.
Krämer
,
W.
Joppich
,
D.
Reith
, and
H.
Foysi
, “
Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies
,”
Phys. Rev. E
97
,
023313
(
2018
).
47.
H.
Liang
,
J.
Xu
,
J.
Chen
,
H.
Wang
,
Z.
Chai
, and
B.
Shi
, “
Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows
,”
Phys. Rev. E
97
,
033309
(
2018
).
48.
A.
Fakhari
,
T.
Mitchell
,
C.
Leonardi
, and
D.
Bolster
, “
Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios
,”
Phys. Rev. E
96
,
053301
(
2017
).
49.
Y.
Bao
,
J.
Jia
,
S.
Tong
,
Z.
Gao
, and
Z.
Cai
, “
A review on single bubble gas–liquid mass transfer
,”
Chin. J. Chem. Eng.
28
,
2707
2722
(
2020
).
50.
S.
Nedeltchev
,
U.
Jordan
, and
A.
Schumpe
, “
Correction of the penetration theory based on mass-transfer data from bubble columns operated in the homogeneous regime under high pressure
,”
Chem. Eng. Sci.
62
,
6263
6273
(
2007
).
51.
A.
Lochiel
and
P.
Calderbank
, “
Mass transfer in the continuous phase around axisymmetric bodies of revolution
,”
Chem. Eng. Sci.
19
,
471
484
(
1964
).
52.
B.
Figueroa-Espinoza
and
D.
Legendre
, “
Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid
,”
Chem. Eng. Sci.
65
,
6296
6309
(
2010
).
53.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Courier Corporation
,
2005
).
54.
Z.-H.
Chai
and
T.-S.
Zhao
, “
A pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent/multiphase flows
,”
Acta Mech. Sin.
28
,
983
992
(
2012
).
55.
Z.
Chai
and
T. S.
Zhao
, “
Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor
,”
Phys. Rev. E
86
,
016705
(
2012
).
You do not currently have access to this content.