Liquid spreading and atomization due to jet impingement in liquid–liquid systems is considered to be crucial for understanding cooling behavior of high temperature molten martial into shallow water pool. This phenomenon takes place where a liquid jet enters a pool filled with another immiscible liquid. The jet spreads radially after impinging on the floor while forming a thin liquid film and atomizing droplets. In this study, we employed three-dimensional Laser-Induced Fluorescence (3D-LIF) measurements and three-dimensional (3D) reconstruction to quantify its unsteady three-dimensional behavior. Under high flow velocity conditions, atomization occurred along with the spreading of the liquid film. To evaluate the spreading behavior of the liquid film, a comparison was made with the existing theory of gas–liquid systems. The spreading of the liquid film was suppressed compared with that of the gas–liquid system. Furthermore, the particle tracking velocimetry method was successfully used to measure the velocity boundary layer and velocity profile in the liquid film, which are important factors that affect the spreading mechanism of the liquid film. The results revealed that in liquid–liquid systems, shear stress at the liquid–liquid interface causes a decrease in the flow velocity and suppressed development of the velocity boundary layer. To evaluate the atomization behavior, the number and diameter distribution of the atomized droplets were measured from the acquired three-dimensional shape data of the jet. The number of droplets increased with the flow velocity. The results show that the jump radius is affected by such atomization behavior, and since the jump radius was lower than the theoretical value, we can conclude that the location of the hydraulic jump is expected to undergo an upstream transition.

1.
L.
Rayleigh
, “
On the theory of long waves and bores
,”
Proc. R. Soc.
90
(
619
),
324
328
(
1914
).
2.
E. J.
Watson
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
(
3
),
481
499
(
1964
).
3.
J. W.
Bush
and
J. M.
Aristoff
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
238
(
2003
).
4.
A. R.
Kasimov
, “
A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue
,”
J. Fluid Mech.
601
,
189
198
(
2008
).
5.
B.
Mohajer
and
L.
Ri
, “
Circular hydraulic jump on finite surfaces with capillary limit
,”
Phys. Fluids
27
,
117102
(
2015
).
6.
R.
Fernandez-Feria
,
E.
Sanmiguel-Rojas
, and
E. S.
Benilov
, “
On the origin and structure of a stationary circular hydraulic jump
,”
Phys. Fluids
31
,
072104
(
2019
).
7.
T.
Bohr
,
P.
Dimon
, and
V.
Putkaradze
, “
Shallow-water approach to the circular hydraulic jump
,”
J. Fluid Mech.
254
,
635
648
(
1993
).
8.
I.
Tani
, “
Water jump in the boundary layer
,”
J. Phys. Soc. Jpn.
4
,
212
215
(
1949
).
9.
A.
Duchesne
,
L.
Lebon
, and
L.
Limat
, “
Constant froude number in a circular hydraulic jump and its implication on the jump radius selection
,”
Europhys. Lett.
107
(
5
),
54002
(
2014
).
10.
N.
Rojas
,
M.
Argentina
,
E.
Cerda
, and
E.
Tirapegui
, “
Inertial lubrication theory
,”
Phys. Rev. Lett.
104
(
18
),
187801
(
2010
).
11.
N.
Rojas
,
M.
Argentina
, and
E.
Tirapegui
, “
A progressive correction to the circular hydraulic jump scaling
,”
Phys. Fluids
25
(
4
),
042105
(
2013
).
12.
R. K.
Bhagat
,
N. K.
Jha
,
P. F.
Linden
, and
D. I.
Wilson
, “
On the origin of the circular hydraulic jump in a thin liquid film
,”
J. Fluid Mech.
851
,
R5
(
2018
).
13.
R. K.
Bhagat
and
P. F.
Linden
, “
The circular capillary jump
,”
J. Fluid Mech.
896
,
A25
(
2020
).
14.
R. K.
Bhagat
,
D.
Ian Wilson
, and
P. F.
Linden
, “
Experimental evidence for surface tension origin of the circular hydraulic jump
,” arXiv:2010.04107 (
2020
).
15.
C. T.
Avedisian
and
Z.
Zhao
, “
The circular hydraulic jump in low gravity
,”
Proc. R Soc. London, Ser. A
456
,
2127
2151
(
2000
).
16.
A.
Duchesne
,
A.
Anders
, and
B.
Tomas
, “
Surface tension and the origin of the circular hydraulic jump in a thin liquid film
,”
Phys. Rev. Fluids
4
(
8
),
084001
(
2019
).
17.
A.
Duchesne
and
L.
Limat
, “
Circular hydraulic jumps: Where does surface tension matter?
,”
J. Fluid Mech.
937
,
R2
(
2022
).
18.
M.
Dhar
,
G.
Das
, and
P. K.
Das
, “
Planar hydraulic jumps in thin film flow
,”
J. Fluid Mech.
884
,
A11
(
2020
).
19.
M.
Dhar
,
S.
Ray
,
G.
Das
, and
P. K.
Das
, “
Internal hydraulic jump in plane Poiseuille two-layer flow: Theoretical, numerical and experimental study
,”
J. Fluid Mech.
912
,
A45
(
2021
).
20.
T. W.
Walker
,
A. N.
Logia
, and
G. G.
Fuller
, “
Multiphase flow of miscible liquids: Jets and drops
,”
Exp. Fluids
56
(
5
),
106
(
2015
).
21.
T.
Fujimatsu
,
H.
Fujita
,
M.
Hirota
, and
O.
Okada
, “
Interfacial deformation between an impacting water drop and a silicone-oil surface
,”
J. Colloid Interface Sci.
264
(
1
),
212
220
(
2003
).
22.
X. S.
Wang
,
X. D.
Zhao
,
Y.
Zhang
,
X.
Cai
,
R.
Gu
, and
H. L.
Xu
, “
Experimental study on the interaction of a water drop impacting on hot liquid surfaces
,”
J. Fire Sci.
27
(
6
),
545
559
(
2009
).
23.
N.
Baumann
,
D. D.
Joseph
,
P.
Mohr
, and
Y.
Renardy
, “
Vortex rings of one fluid in another in free fall
,”
Phys. Fluids A
4
(
3
),
567
580
(
1992
).
24.
S.
Saito
,
Y.
Abe
, and
K.
Koyama
, “
Flow transition criteria of a liquid jet into a liquid pool
,”
Nucl. Eng. Des.
315
(
15
),
128
143
(
2017
).
25.
S. A.
Thorpe
and
I.
Kavcic
, “
The circular internal hydraulic jump
,”
J. Fluid Mech.
610
,
99
129
(
2008
).
26.
F.
Kimura
,
S.
Yamamura
,
K.
Fujiwara
,
H.
Yoshida
,
S.
Saito
,
A.
Kaneko
, and
Y.
Abe
, “
Time-resolved 3D visualization of liquid jet breakup and impingement behavior in a shallow liquid pool
,”
Nucl. Eng. Des.
389
,
111660
(
2022
).
27.
R.
Budwig
, “
Refractive index matching methods for liquid flow investigations
,”
Exp. Fluids
17
,
350
355
(
1994
).
28.
G.
Kychakoff
,
P. H.
Paul
,
I.
van Cruyningen
, and
R. K.
Hanson
, “
Movies and 3D images of flowfields using planar laser-induced fluorescence
,”
Appl. Opt.
26
(
13
),
2498
2500
(
1987
).
29.
B.
Yip
,
R. L.
Schmitt
, and
M. B.
Long
, “
Instantaneous three-dimensional concentration measurements in turbulent jets and flames
,”
Opt. Lett.
13
(
2
),
96
98
(
1988
).
30.
B.
Ruck
and
B.
Pavlovski
, “
Laser tomography for flow structure analysis
,”
High Temp.
38
(
1
),
106
117
(
2000
).
31.
Y. G.
Guezennec
,
Z.
Yang
, and
T. J.
Gieseke
, “
High-speed 3D scanning particle image velocimetry (3D SPIV) technique
,”
Developments in Laser Techniques and Applications to Fluid Mechanics
(
Springer
,
Berlin, Heidelberg
,
1996
), pp.
392
407
.
32.
C.
Delo
and
A. J.
Smits
, “
Volumetric visualization of coherent structure in a low Reynolds number turbulent boundary layer
,”
Int. J. Fluid Dyn.
1
,
3
(
1997
).
33.
C.
Brücker
, “
Study of the three-dimensional flow in a T-junction using a dual-scanning method for three-dimensional scanning-particle-image velocimetry (3-D SPIV)
,”
Exp. Thermal Fluid Sci.
14
(
1
),
35
44
(
1997
).
34.
K. Y.
Cho
,
A.
Satija
,
T. L.
Pourpoint
,
S. F.
Son
, and
R. P.
Lucht
, “
Time-resolved 3D OH planar laser-induced fluorescence system for multiphase combustion
,” in
8th US National Combustion Meeting
,
2013
.
35.
C. J.
Crocker
and
G. D.
Grier
, “
Method of digital video microscopy for colloidal studies
,”
J. Colloid Interfaces Sci.
179
(
1
),
298
310
(
1996
).
You do not currently have access to this content.