Measuring physical flow properties, such as density and temperature, at high frequency in high temperature and pressure environments is very challenging. Rapid fluctuations of these properties often have an impact on combustion efficiency and stability. We hereby attempt to measure density fluctuations in high-pressure premixed combustion using high temporal resolution laser Rayleigh scattering. The Rayleigh scattering intensity was assessed by counting individual photons due to the low signal to noise ratio. The measurement system was first verified at various air pressures without combustion. Combustion experiments were then conducted at four different pressures, from 1 to 7 bar. The density fluctuations increased with pressure, but the dominant fluctuation frequency decreased. Proper orthogonal decomposition analysis of high-speed schlieren images of the flame front was used to verify the results.

1.
F. Q.
Zhao
and
H.
Hiroyasu
, “
The applications of laser Rayleigh scattering to combustion diagnostics
,”
Prog. Energy Combust. Sci.
19
,
447
(
1993
).
2.
K.
Kohse-Hoinghaus
,
R. S.
Barlow
,
M.
Alden
, and
J.
Wolfrum
, “
Combustion at the focus: Laser diagnostics and control
,”
Proc. Combust. Inst.
30
,
89
(
2005
).
3.
R.
Barat
,
J.
Longwell
,
A.
Sarofim
,
S.
Smith
, and
E.
Bar-Ziv
, “
Laser Rayleigh scattering for flame thermometry in a toroidal jet stirred combustor
,”
Appl. Opt.
30
,
3003
(
1991
).
4.
J.
Frank
and
S.
Kaiser
, “
High-resolution imaging of dissipative structures in a turbulent jet flame with laser Rayleigh scattering
,”
Exp. Fluids
44
,
221
(
2008
).
5.
R. N.
Dahms
,
G. A.
Paczko
,
S. A.
Skeen
, and
L. M.
Pickett
, “
Understanding the ignition mechanism of high-pressure spray flames
,”
Proc. Combust. Inst.
36
,
2615
(
2017
).
6.
C.
Espey
,
J. E.
Dec
,
T. A.
Litzinger
, and
D. A.
Santavicca
, “
Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a diesel jet
,”
Combust. Flame
109
,
65
(
1997
).
7.
C.
Schulz
,
V.
Sick
,
J.
Wolfrum
,
V.
Drewes
, and
R.
Maly
, “
Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine
,”
Proc. Combust. Inst.
26
,
2597
(
1996
).
8.
D.
Hoffman
,
K.-U.
Münch
, and
A.
Leipertz
, “
Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering
,”
Opt. Lett.
21
,
525
(
1996
).
9.
D.
Most
and
A.
Leipertz
, “
Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique
,”
Appl. Opt.
40
,
5379
(
2001
).
10.
I.
Trueba Monje
and
J. A.
Sutton
, “
Filtered Rayleigh scattering thermometry in premixed flames
,” AIAA Paper No. 2018-1772,
2018
.
11.
G. S.
Elliott
,
N.
Glumac
, and
C. D.
Carter
, “
Molecular filtered Rayleigh scattering applied to combustion
,”
Meas. Sci. Technol.
12
,
452
(
2001
).
12.
U.
Doll
,
M.
Fischer
,
G.
Stockhausen
, and
C.
Willert
, “
Frequency scanning filtered Rayleigh scattering in combustion experiments
,” in
16th International Symposium on the Applications of Laser Techniques to Fluid Mechanics
(
Institute of Propulsion Technology
,
2012
), p.
1
.
13.
S.
Graham
,
A.
Grant
, and
J.
Jones
, “
Transient molecular concentration measurements in turbulent flows using Rayleigh light scattering
,”
AIAA J.
12
,
1140
(
1974
).
14.
T. A.
Mcmanus
,
I. T.
Monje
, and
J. A.
Sutton
, “
Experimental assessment of the Tenti S6 model for combustion-relevant gases and filtered Rayleigh scattering applications
,”
Appl. Phys. B
125
,
13
(
2019
).
15.
S. W.
Grib
,
N.
Jiang
,
P. S.
Hsu
,
P. M.
Danehy
, and
S.
Roy
, “
Rayleigh-scattering-based two-dimensional temperature measurement at 100-kHz frequency in a reacting flow
,”
Opt. Express
27
,
27902
(
2019
).
16.
M.
Li
,
B.
Yan
,
L.
Chen
, and
S.
Chen
, “
Two-dimensional thermometry measurements in confined swirl flames using filtered Rayleigh scattering
,”
Appl. Phys. B
127
,
80
(
2021
).
17.
I.
Namer
and
R.
Schefer
, “
Error estimates for Rayleigh scattering density and temperature measurements in premixed flames
,”
Exp. Fluids
3
,
1
(
1985
).
18.
C.
Herrera
,
D.
Hernandez
, and
B.
Garcia
, “
Temperature measurement of an axisymmetric flame by using a Schlieren system
,”
J. Opt. A
10
,
104014
(
2008
).
19.
J.
Fang
,
R.
Tu
,
J.
Guan
,
J.
Wang
, and
Y.
Zhang
, “
Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires
,”
Fuel
90
,
2760
(
2011
).
20.
H.
Gotoda
,
T.
Ueda
,
I.
Shepherd
, and
R.
Cheng
, “
Flame flickering frequency on a rotating Bunsen burner
,”
Chem. Eng. Sci.
62
,
1753
(
2007
).
21.
K. K.
Hamamatsu Photonics
, in
Photomultiplier Tubes: Basics and Applications
, edited by
H.
Toshikazu
(
Hamamatsu Photonics K.K
,
2007
), Chap. 6, pp.
125
134
.
22.
B.
Mercier
,
T.
Castelain
,
E.
Jondeau
, and
C.
Bailly
, “
Density fluctuations measurement by Rayleigh scattering using a single photomultiplier
,”
AIAA J.
56
,
1310
(
2018
).
23.
V.
Bluemel
,
L. M.
Narducci
, and
R. A.
Tuft
, “
Photon-count distributions and irradiance fluctuations of a log-normally distributed light field
,”
J. Opt. Soc. Am.
62
,
1309
(
1972
).
24.
L. L.
Kish
,
J.
Kameoka
,
C. G.
Granqvist
, and
L. B.
Kish
, “
Log-normal distribution of single molecule fluorescence bursts in micro/nano-fluidic channels
,”
Appl. Phys. Lett.
99
,
143121
(
2011
).
25.
B. E.
Saleh
and
M. C.
Teich
, in
Fundamentals of Photonics
, edited by
G.
Boreman
(
Wiley
,
Hoboken
,
2019
), Chap. 13, pp.
514
554
.
26.
H.
Kobayashi
and
H.
Kawazoe
, “
Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames
,”
Proc. Combust. Inst.
28
,
375
(
2000
).
27.
F.
Ichihashi
,
S. M.
Jeng
, and
K.
Cohen
, “
Proper orthogonal decomposition and Fourier analysis on the energy release rate dynamics of a gas turbine combustor
,” AIAA Paper No. 2010-22,
2010
.

Supplementary Material

You do not currently have access to this content.