We study the nonlinear modulation property of flexural-gravity waves on a water surface covered by a compressed ice sheet of given thickness and density in a basin of a constant depth. For weakly nonlinear perturbations, we derive the nonlinear Schrödinger equation and investigate the conditions when a quasi-sinusoidal wave becomes unstable with respect to amplitude modulation. The domains of instability are presented in the planes of governing physical parameters; the shapes of the domains exhibit fairly complicated patterns. It is shown that, under certain conditions, the modulational instability can develop from shorter groups and for fewer wave periods than in the situation of deep-water gravity waves on a free water surface. The modulational instability can occur at the conditions shallower than that known for the free water surface kh =1.363, where k is the wavenumber and h is the water depth. Estimates of parameters of modulated waves are given for the typical physical conditions of an ice-covered sea.

1.
Ablowitz
,
M. J.
and
Segur
,
H.
, “
On the evolution of packets of water waves
,”
J. Fluid Mech.
92
(
4
),
691
715
(
1979
).
2.
Ablowitz
,
M. J.
and
Segur
,
H.
,
Solitons and the Inverse Scattering Transform
(
SIAM
,
Philadelphia
,
1981
).
3.
Alberello
,
A.
and
Părău
,
E. I.
, “
A dissipative nonlinear Schrödinger model for wave propagation in the marginal ice zone
,”
Phys. Fluids
34
,
061702
(
2022
).
4.
Berger
,
K. M.
and
Milewski
,
P. A.
, “
The generation and evolution of lump solitary waves in surface-tension-dominated flows
,”
SIAM J. Appl. Math.
61
(
3
),
731
750
(
2000
).
5.
Bukatov
,
A. E.
,
Waves in a Sea with a Floating Ice Cover
(
Marine Hydrophysical Institute of RAS
,
2017
) (in Russian).
6.
Chabchoub
,
A.
,
Hoffmann
,
N. P.
, and
Akhmediev
,
N.
, “
Rogue wave observation in a water wave tank
,”
Phys. Rev. Lett.
106
,
204502
(
2011
).
7.
Chabchoub
,
A.
,
Hoffmann
,
N.
,
Onorato
,
M.
,
Slunyaev
,
A.
,
Sergeeva
,
A.
,
Pelinovsky
,
E.
, and
Akhmediev
,
N.
, “
Observation of a hierarchy of up to fifth-order rogue waves in a water tank
,”
Phys. Rev. E
86
,
056601
(
2012
).
8.
Chabchoub
,
A.
,
Kimmoun
,
O.
,
Branger
,
H.
,
Hoffmann
,
N.
,
Proment
,
D.
,
Onorato
,
M.
, and
Akhmediev
,
N.
, “
Experimental observation of dark solitons on the surface of water
,”
Phys. Rev. Lett.
110
,
124101
(
2013
).
9.
Collins
,
C. O.
,
Rogers
,
W. E.
,
Marchenko
,
A.
, and
Babanin
,
A. V.
, “
In situ measurements of an energetic wave event in the Arctic marginal ice zone
,”
Geophys. Res. Lett.
42
,
1863
1870
, (
2015
).
10.
Djordjevic
,
V.
and
Redekopp
,
L.
, “
On two-dimensional packets of capillary-gravity waves
,”
J. Fluid Mech.
79
,
703
714
(
1977
).
11.
Ducrozet
,
G.
,
Slunyaev
,
A. V.
, and
Stepanyants
,
Y. A.
, “
Transformation of envelope solitons on a bottom step
,”
Phys. Fluids
33
,
066606
(
2021
).
12.
Dysthe
,
K. B.
, “
Note on a modification to the nonlinear Schrödinger equation for application to deep water waves
,”
Proc. R. Soc. London, Ser. A
369
,
105
114
(
1979
).
13.
Forbes
,
L. K.
, “
Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution
,”
J. Fluid Mech.
169
,
409
428
(
1986
).
14.
Guyenne
,
P.
and
Părău
,
E. I.
, “
Finite-depth effects on solitary waves in a floating ice-sheet
,”
J. Fluids Struct.
49
,
242
262
(
2014
).
15.
Il'ichev
,
A. T.
, “
Solitary wave packets beneath a compressed ice cover
,”
Fluid Dyn.
51
(
3
),
327
337
(
2016
).
16.
Il'ichev
,
A. T.
, “
Effective wavelength of envelope waves on the water surface beneath an ice sheet: Small amplitudes and moderate depths
,”
Theor. Math. Phys.
208
(
3
),
1182
1200
(
2021
).
17.
Kharif
,
C.
,
Pelinovsky
,
E.
, and
Slunyaev
,
A.
,
Rogue Waves in the Ocean
(
Springer-Verlag
,
Berlin/Heidelberg
,
2009
).
18.
Kheisin
,
D. Y.
, “
Dynamics of floating ice cover
,”
Report No. FSTC-HT-23-485-69
(U.S. Army Foreign Science and Technology Center,
1967
) (in Russian).
19.
Lighthill
,
M. J.
, “
Contributions to the theory of waves in nonlinear dispersive systems
,”
IMA J. Appl. Math.
1
,
269
306
(
1965
).
20.
Lighthill
,
M. J.
,
Waves in Fluids
(
Cambridge University Press
,
Cambridge, UK
,
1978
).
21.
Liu
,
A. K.
and
Mollo-Christensen
,
E.
, “
Wave propagation in a solid ice pack
,”
J. Phys. Oceanogr.
18
,
1702
1712
(
1988
).
22.
Marchenko
,
A. V.
and
Shrira
,
V. I.
, “
Theory of two-dimensional nonlinear waves in liquid covered by ice
,”
Fluid Dyn.
26
,
580
587
(
1992
).
23.
Marko
,
J. R.
, “
Observations and analyses of an intense waves-in-ice event in the Sea of Okhotsk
,”
J. Geophys. Res.
108
,
3296
, (
2003
).
24.
Onorato
,
M.
,
Cavaleri
,
L.
,
Randoux
,
S.
,
Suret
,
P.
,
Ruiz
,
M. I.
,
Alfonso
,
M.
, and
Benetazzo
,
A.
, “
Observation of a giant nonlinear wave packet on the surface of the ocean
,”
Sci. Rep.
11
,
23606
(
2021
).
25.
Onorato
,
M.
,
Osborne
,
A. R.
,
Serio
,
M.
, and
Bertone
,
S.
, “
Freak waves in random oceanic sea states
,”
Phys. Rev. Lett.
86
,
5831
5834
(
2001
).
26.
Onorato
,
M.
and
Proment
,
D.
, “
Approximate rogue wave solutions of the forced and damped nonlinear Schrödinger equation for water waves
,”
Phys. Lett. A
376
,
3057
3059
(
2012
).
27.
Onorato
,
M.
,
Residori
,
S.
,
Bortolozzo
,
U.
,
Montina
,
A.
, and
Arecchi, F.
T.
, “
Rogue waves and their generating mechanisms in different physical contexts
,”
Phys. Rep.
528
,
47
89
(
2013
).
28.
Osborne
,
A. R.
,
Nonlinear Ocean Waves and Inverse Scattering Transform
(
Academic Press
,
Boston
,
2010
).
29.
Ostrovsky
,
L. A.
and
Potapov
,
A. I.
,
Modulated Waves: Theory and Applications
(
The Johns Hopkins University Press
,
London, UK
,
1999
).
30.
Părău
,
E.
and
Dias
,
F.
, “
Nonlinear effects in the response of a floating ice plate to a moving load
,”
J. Fluid Mech.
460
,
281
305
(
2002
).
31.
Plotnikov
,
P. I.
and
Toland
,
J. F.
, “
Modelling nonlinear hydroelastic waves
,”
Philos. Trans. R. Soc., Ser. A
369
,
2942
2956
(
2011
).
32.
Randoux
,
S.
,
Walczak
,
P.
,
Onorato
,
M.
, and
Suret
,
P.
, “
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
,”
Physica D
333
,
323
335
(
2016
).
33.
Sahoo
,
T
 et al,
Mathematical Techniques for Wave Interaction with Flexible Structures
(
CRC Press
,
Boca Raton
,
2012
).
34.
Segur
,
H.
,
Henderson
,
D.
,
Carter
,
J.
,
Hammack
,
J.
,
Li
,
C.
,
Phei
,
D.
, and
Socha
,
K.
, “
Stabilizing the Benjamin–Feir instability
,”
J. Fluid Mech.
539
,
229
272
(
2005
).
35.
Slunyaev
,
A. V.
, “
Numerical simulation of ‘limiting’ envelope solitons of gravity waves on deep water
,”
J. Exp. Theor. Phys.
109
,
676
686
(
2009
).
36.
Slunyaev
,
A.
,
Clauss
,
G. F.
,
Klein
,
M.
, and
Onorato
,
M.
, “
Simulations and experiments of short intense envelope solitons of surface water waves
,”
Phys. Fluids
25
,
067105
(
2013
).
37.
Slunyaev
,
A.
,
Sergeeva
,
A.
, and
Pelinovsky
,
E.
, “
Wave amplification in the framework of forced nonlinear Schrödinger equation: The rogue wave context
,”
Physica D
303
,
18
27
(
2015
).
38.
Slunyaev
,
A. V.
, “
A high-order nonlinear envelope equation for gravity waves in finite-depth water
,”
J. Exp. Theor. Phys.
101
(
5
),
926
941
(
2005
).
39.
Slunyaev
,
A. V.
, “
Persistence of hydrodynamic envelope solitons: Detection and rogue wave occurrence
,”
Phys. Fluids
33
,
036606
(
2021
).
40.
Slunyaev
,
A. V.
and
Kokorina
,
A. V.
, “
Soliton groups as the reason for extreme statistics of unidirectional sea waves
,”
J. Ocean Eng. Mar. Energy
3
,
395
408
(
2017
).
41.
Squire
,
V. A.
, “
Ocean wave interactions with sea ice: A reappraisal
,”
Annu. Rev. Fluid Mech.
52
,
37
60
(
2020
).
42.
Squire
,
V. A.
,
Hosking
,
R. J.
,
Kerr
,
A. D.
, and
Langhorne
,
P. J.
,
Moving Loads on Ice Plates
(
Springer
, The
Netherlands
,
1996
).
43.
Stepanyants
,
Y. A.
and
Sturova
,
I. V.
, “
Waves on a compressed floating ice plate caused by motion of a dipole in water
,”
J. Fluid Mech.
907
,
A7-1
A7-29
(
2021
).
44.
Trulsen
,
K.
and
Dysthe
,
K. B.
, “
A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water
,”
Wave Motion
24
,
281
289
(
1996
).

Supplementary Material

You do not currently have access to this content.