This paper investigates the potential of using an active flow control technique to modify stall flutter oscillations of a NACA (National Advisory Committee for Aeronautics) 0015 wing section. Wind tunnel experiments have been performed with a test-rig that provides the elastic degree of freedom in pitch. Measurements of the clean airfoil are taken at preset angles of θ0=6°12°, and for Reynolds numbers of Rec=6.2×1041.25×105, which reveal the dependency of the stall flutter oscillations to Rec and θ0. Then, flow control experiments are carried out at θ0=10° and Rec=1.04×105. Two dielectric barrier discharge plasma actuators have been employed simultaneously to exert dual-point excitation to the baseline flow. It is shown that during the upstroke half-cycle, plasma actuation postpones the dynamic stall of the airfoil and increases the maximum pitch angle of the stall flutter cycle. On the downstroke, dual-point excitation effectively improves the rate of pitching moment recovery and leads to flow reattachment at a larger pitch angle. Normalized excitation frequencies Fex=fex/fw (where fw is the wake mode frequency of the stalled airfoil) ranging from 0.1 up to 3 have been examined. Among the controlled cases, excitation with Fex=0.6 and Fex=2.2 provides the largest and smallest pitch amplitude, respectively, and the case of Fex=3 demonstrates the most impact on flow reattachment. Finally, it has been concluded that the employed control strategy is effectively capable of modifying the dynamic stall process and associated pitching moment. However, a more sophisticated control strategy would be required to significantly mitigate the stall flutter oscillations.

1.
D.
Poirel
,
L.
Goyaniuk
, and
A.
Benaissa
, “
Frequency lock-in in pitch–heave stall flutter
,”
J. Fluids Struct.
79
,
14
25
(
2018
).
2.
P. K.
Chaviaropoulos
,
N. N.
Soerensen
,
M. O. L.
Hansen
,
I. G.
Nikolaou
,
K. A.
Aggelis
,
J.
Johansen
,
M.
Gaunaa
,
T.
Hambraus
,
H. F.
von Geyr
,
C.
Hirsch
,
K.
Shun
,
S. G.
Voutsinas
,
G.
Tzabiras
,
Y.
Perivolaris
, and
S. Z.
Dyrmose
, “
Viscous and aeroelastic effects on wind turbine blades. The VISCEL project. Part II: Aeroelastic stability investigations
,”
Wind Energy
6
,
387
403
(
2003
).
3.
N. D.
Ham
and
M. I.
Young
, “
Torsional oscillation of helicopter blades due to stall
,”
J. Aircr.
3
,
218
224
(
1966
).
4.
C.
Fagley
,
J.
Seidel
, and
T.
McLaughlin
, “
Cyber-physical flexible wing for aeroelastic investigations of stall and classical flutter
,”
J. Fluids Struct.
67
,
34
47
(
2016
).
5.
E. C.
Culler
and
J. A.
Farnsworth
, “
Higher frequencies in stall flutter moment development
,”
J. Fluids Struct.
85
,
181
198
(
2019
).
6.
L.
Goyaniuk
,
D.
Poirel
, and
A.
Benaissa
, “
Pitch–heave symmetric stall flutter of a NACA0012 at transitional Reynolds numbers
,”
AIAA J.
58
,
3286
3298
(
2020
).
7.
L.
dos Santos
and
F.
Marques
, “
Nonlinear aeroelastic analysis of airfoil section under stall flutter oscillations and gust loads
,”
J. Fluids Struct.
102
,
103250
(
2021
).
8.
Z.
Peng
and
Q.
Zhu
, “
Energy harvesting through flow-induced oscillations of a foil
,”
Phys. Fluids
21
,
123602
(
2009
).
9.
C.
Bao
,
Y.
Dai
,
P.
Wang
, and
G.
Tang
, “
A piezoelectric energy harvesting scheme based on stall flutter of airfoil section
,”
Eur. J. Mech.—B/Fluids
75
,
119
132
(
2019
).
10.
M. M.
Alam
,
L.-M.
Chao
,
S.
Rehman
,
C.
Ji
, and
H.
Wang
, “
Energy harvesting from passive oscillation of inverted foil
,”
Phys. Fluids
33
,
075111
(
2021
).
11.
G.
Dimitriadis
and
J.
Li
, “
Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-speed wind tunnel
,”
AIAA J.
47
,
2577
2596
(
2009
).
12.
X.
Amandolese
,
S.
Michelin
, and
M.
Choquel
, “
Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel
,”
J. Fluids Struct.
43
,
244
255
(
2013
).
13.
S. S.
Bhat
and
R. N.
Govardhan
, “
Stall flutter of NACA 0012 airfoil at low Reynolds numbers
,”
J. Fluids Struct.
41
,
166
174
(
2013
).
14.
S. G.
Pouryoussefi
,
M.
Mirzaei
, and
M.
Hajipour
, “
Experimental study of separation bubble control behind a backward-facing step using plasma actuators
,”
Acta Mech.
226
,
1153
1165
(
2015
).
15.
J.
Deparday
and
K.
Mulleners
, “
Modeling the interplay between the shear layer and leading edge suction during dynamic stall
,”
Phys. Fluids
31
,
107104
(
2019
).
16.
N. A.
Razak
,
T.
Andrianne
, and
G.
Dimitriadis
, “
Flutter and stall flutter of a rectangular wing in a wind tunnel
,”
AIAA J.
49
,
2258
2271
(
2011
).
17.
X.
Amandolese
, “
Low speed flutter and post-critical behaviour of flat plate and NACA0018 section models in a wind tunnel
,” in
First International Symposium on Flutter and Its Application
(JAXA,
2016
), pp.
447
455
.
18.
P.
Šidlof
,
V.
Vlček
, and
M.
Štěpán
, “
Experimental investigation of flow-induced vibration of a pitch–plunge NACA 0015 airfoil under deep dynamic stall
,”
J. Fluids Struct.
67
,
48
59
(
2016
).
19.
C. R.
dos Santos
,
D. A.
Pereira
, and
F. D.
Marques
, “
On limit cycle oscillations of typical aeroelastic section with different preset angles of incidence at low airspeeds
,”
J. Fluids Struct.
74
,
19
34
(
2017
).
20.
A.
Benaissa
,
S.
Biskri
,
L.
Goyaniuk
,
D.
Poirel
, and
N. N.
Bouda
, “
Beating phenomenon in frequency lock-in 2DOF stall flutter
,”
J. Fluids Struct.
100
,
103176
(
2021
).
21.
D.
Gkiolas
and
D.
Mathioulakis
, “
PIV and surface pressure measurements on a NACA64418 airfoil undergoing stall flutter
,” in
AIAA Scitech 2020 Forum
(
AIAA
,
2020
), p.
0090
.
22.
R.
Gabel
and
F.
Tarzanin
, “
Blade torsional tuning to manage large amplitude control loads
,”
J. Aircr.
11
,
460
466
(
1974
).
23.
X.
Li
and
S.
Fleeter
, “
Active suppression of nonlinear stall flutter using piezoelectric actuators
,” in
32nd Joint Propulsion Conference and Exhibit
(
AIAA
,
1996
), p.
3177
.
24.
D.
Tang
and
E.
Dowell
, “
Flutter/LCO suppression for high-aspect ratio wings
,”
Aeronaut. J.
113
,
409
416
(
2009
).
25.
E.
Verstraelen
,
G.
Habib
,
G.
Kerschen
, and
G.
Dimitriadis
, “
Experimental passive flutter suppression using a linear tuned vibration absorber
,”
AIAA J.
55
,
1707
1722
(
2017
).
26.
A.
Malher
,
O.
Doaré
, and
C.
Touzé
, “
Influence of a hysteretic damper on the flutter instability
,”
J. Fluids Struct.
68
,
356
369
(
2017
).
27.
Z.
Sun
,
S.
Haghighat
,
H. H.
Liu
, and
J.
Bai
, “
Time-domain modeling and control of a wing-section stall flutter
,”
J. Sound Vib.
340
,
221
238
(
2015
).
28.
F.
Niel
,
A.
Seuret
,
L.
Zaccarian
, and
C.
Fagley
, “
Robust LQR control for stall flutter suppression: A polytopic approach
,”
IFAC-PapersOnLine
50
,
11367
11372
(
2017
).
29.
N.
Li
,
M. J.
Balas
,
P.
Nikoueeyan
,
H.
Yang
, and
J. W.
Naughton
, “
Stall flutter control of a smart blade section undergoing asymmetric limit oscillations
,”
Shock Vib.
2016
,
5096128
.
30.
T.
Liu
, “
Aeroservoelastic pitch control of stall-induced flap/lag flutter of wind turbine blade section
,”
Shock Vib.
2015
,
692567
.
31.
T. C.
Corke
and
F. O.
Thomas
, “
Dynamic stall in pitching airfoils: Aerodynamic damping and compressibility effects
,”
Annu. Rev. Fluid Mech.
47
,
479
505
(
2015
).
32.
H.
Yu
and
J.
Zheng
, “
Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators
,”
Phys. Fluids
32
,
035103
(
2020
).
33.
D.
Castañeda
,
N.
Whiting
,
N.
Webb
, and
M.
Samimy
, “
An experimental investigation of deep dynamic stall control using plasma actuators
,”
Exp. Fluids
63
,
69
(
2022
).
34.
S.
Krishnappa
,
N.
Jogi
,
L. D.
Nguyen
,
S.
Gudmundsson
,
W. T.
MacKunis
, and
V. V.
Golubev
, “
Towards experimental validation of robust control of gust-induced airfoil limit cycle oscillations using synthetic jet actuators
,” in
46th AIAA Fluid Dynamics Conference
(
AIAA
,
2016
), p.
4262
.
35.
C. J.
Barnes
and
M. R.
Visbal
, “
Mitigation of laminar separation flutter using plasma-based actuators
,” in
2018 Flow Control Conference
(
AIAA
,
2018
), p.
3523
.
36.
G.
Huang
,
Y.
Dai
,
C.
Yang
,
Y.
Wu
, and
Y.
Xia
, “
Effect of dielectric barrier discharge plasma actuator on the dynamic moment behavior of pitching airfoil at low Reynolds number
,”
Phys. Fluids
33
,
043603
(
2021
).
37.
A. J.
Lombardi
,
P. O.
Bowles
, and
T. C.
Corke
, “
Closed-loop dynamic stall control using a plasma actuator
,”
AIAA J.
51
,
1130
1141
(
2013
).
38.
J.
Seidel
,
C. P.
Fagley
, and
T. E.
McLaughlin
, “
Computations of active open-loop flow control on a fluttering wing
,” in
33rd AIAA Applied Aerodynamics Conference
(
AIAA
,
2015
), p.
2730
.
39.
Z.
Chen
,
Z.
Shi
,
S.
Chen
, and
Z.
Yao
, “
Stall flutter suppression of NACA 0012 airfoil based on steady blowing
,”
J. Fluids Struct.
109
,
103472
(
2022
).
40.
A.
Ebrahimi
,
M.
Hajipour
, and
K.
Ghamkhar
, “
Experimental study of stall control over an airfoil with dual excitation of separated shear layers
,”
Aerosp. Sci. Technol.
82–83
,
402
411
(
2018
).
41.
A.
Ebrahimi
and
M.
Hajipour
, “
Flow separation control over an airfoil using dual excitation of DBD plasma actuators
,”
Aerosp. Sci. Technol.
79
,
658
668
(
2018
).
42.
N. L.
Whiting
,
D.
Castaneda
,
N. J.
Webb
, and
M.
Samimy
, “
Control of dynamic stall over a NACA 0012 airfoil using NS-DBD plasma actuators
,” in
AIAA Scitech 2020 Forum
(
AIAA
,
2020
), p.
1568
.
43.
N.
Benard
,
L.
Cattafesta
 III
,
E.
Moreau
,
J.
Griffin
, and
J.
Bonnet
, “
On the benefits of hysteresis effects for closed-loop separation control using plasma actuation
,”
Phys. Fluids
23
,
083601
(
2011
).
44.
M.
Sato
,
K.
Okada
,
K.
Asada
,
H.
Aono
,
T.
Nonomura
, and
K.
Fujii
, “
Unified mechanisms for separation control around airfoil using plasma actuator with burst actuation over Reynolds number range of 103–106
,”
Phys. Fluids
32
,
025102
(
2020
).
45.
P. A.
Durbin
and
B. A. P.
Reif
, “
Vorticity and vortical structures, in: Statistical theory and modeling for turbulent flows
,” in
Statistical Theory and Modeling for Turbulent Flows
(
John Wiley & Sons, Ltd
.,
2010
), Chap. 5, pp.
91
108
.
46.
S.
Yadala
,
N.
Benard
,
M.
Kotsonis
, and
E.
Moreau
, “
Effect of dielectric barrier discharge plasma actuators on vortical structures in a mixing layer
,”
Phys. Fluids
32
,
124111
(
2020
).
47.
M.
Amitay
and
A.
Glezer
, “
Role of actuation frequency in controlled flow reattachment over a stalled airfoil
,”
AIAA J.
40
,
209
216
(
2002
).
48.
J.
Little
and
M.
Samimy
, “
High-lift airfoil separation with dielectric barrier discharge plasma actuation
,”
AIAA J.
48
,
2884
2898
(
2010
).
49.
B. K.
Mishra
and
P.
Panigrahi
, “
Flow field induced by a dielectric barrier discharge plasma actuator analyzed with bi-orthogonal decomposition
,”
Phys. Fluids
32
,
087112
(
2020
).
50.
K.
Emori
,
Y.
Kaneko
, and
H.
Nishida
, “
Classification of flow-field patterns in burst-mode actuation of a dielectric-barrier-discharge plasma actuator
,”
Phys. Fluids
34
,
023601
(
2022
).
51.
T. C.
Corke
,
M. L.
Post
, and
D. M.
Orlov
, “
Single dielectric barrier discharge plasma enhanced aerodynamics: Physics, modeling and applications
,”
Exp. Fluids
46
,
1
26
(
2009
).
52.
P.
Sujar-Garrido
,
M.
Becerra
, and
R.
Örlü
, “
Efficiency assessment of a single surface dielectric barrier discharge plasma actuator with an optimized Suzen–Huang model
,”
Phys. Fluids
34
,
047110
(
2022
).
53.
T. C.
Corke
,
C. L.
Enloe
, and
S. P.
Wilkinson
, “
Dielectric barrier discharge plasma actuators for flow control
,”
Annu. Rev. Fluid Mech.
42
,
505
529
(
2010
).
54.
K.-B.
Chun
and
H. J.
Sung
, “
Control of turbulent separated flow over a backward-facing step by local forcing
,”
Exp. Fluids
21
,
417
426
(
1996
).
55.
A.
Darabi
and
I.
Wygnanski
, “
Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process
,”
J. Fluid Mech.
510
,
105
129
(
2004
).
56.
T.
Corke
,
B.
Mertz
, and
M.
Patel
, “
Plasma flow control optimized airfoil
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2006
), p.
1208
.
57.
C.
He
,
T. C.
Corke
, and
M. P.
Patel
, “
Plasma flaps and slats: An application of weakly ionized plasma actuators
,”
J. Aircr.
46
,
864
873
(
2009
).
58.
C. J.
Clifford
,
A.
Singhal
, and
M.
Samimy
, “
Leading edge separation control on an airfoil in fully-reversed condition
,” in
32nd AIAA Applied Aerodynamics Conference
(
AIAA
,
2014
), p.
2144
.
59.
T.
Ashcraft
,
K.
Decker
, and
J. C.
Little
, “
Control of boundary layer separation and the wake of an airfoil using NS-DBD plasma actuators
,” in
54th AIAA Aerospace Sciences Meeting
(
AIAA
,
2016
), p.
0839
.
60.
M.
Sato
,
H.
Aono
,
A.
Yakeno
,
T.
Nonomura
,
K.
Fujii
,
K.
Okada
, and
K.
Asada
, “
Multifactorial effects of operating conditions of dielectric-barrier-discharge plasma actuator on laminar-separated-flow control
,”
AIAA J.
53
,
2544
2559
(
2015
).
61.
M. R.
Visbal
and
S. I.
Benton
, “
Exploration of high-frequency control of dynamic stall using large-eddy simulations
,”
AIAA J.
56
,
2974
2991
(
2018
).
62.
A.
Ebrahimi
,
M.
Hajipour
, and
K.
Ghamkhar
, “
Dual-position excitation technique in flow control over an airfoil at low speeds
,”
Int. J. Numer. Methods Heat Fluid Flow
30
,
4141
(
2018
).
63.
D.
Poirel
,
Y.
Harris
, and
A.
Benaissa
, “
Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers
,”
J. Fluids Struct.
24
,
700
719
(
2008
).
64.
P.
Belanger
,
P.
Dobrovolny
,
A.
Helmy
, and
X.
Zhang
, “
Estimation of angular velocity and acceleration from shaft-encoder measurements
,”
Int. J. Rob. Res.
17
,
1225
1233
(
1998
).
65.
ISO/IEC
,
Uncertainty of Measurement-Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995)
(
ISO
,
2008
).
66.
G.
Dimitriadis
, “
Low-speed aerodynamic nonlinearities
,” in
Introduction to Nonlinear Aeroelasticity
(
John Wiley & Sons, Ltd
.,
2017
), Chap. 8, pp.
389
451
.
67.
D.
Poirel
and
W.
Yuan
, “
Aerodynamics of laminar separation flutter at a transitional Reynolds number
,”
J. Fluids Struct.
26
,
1174
1194
(
2010
).
68.
W.
Yuan
,
M.
Khalid
,
D.
Poirel
, and
A.
Benaissa
, “
Low-Reynolds-number effects on airfoil oscillations
,” in
25th AIAA Applied Aerodynamics Conference
(
AIAA
,
2007
), p.
4555
.
69.
A.
Singhal
,
D.
Castañeda
,
N.
Webb
, and
M.
Samimy
, “
Control of dynamic stall over a NACA 0015 airfoil using plasma actuators
,”
AIAA J.
56
,
78
89
(
2018
).
70.
J. H.
Mabe
,
F. T.
Calkins
,
B.
Wesley
,
R.
Woszidlo
,
L.
Taubert
, and
I.
Wygnanski
, “
Single dielectric barrier discharge plasma actuators for improved airfoil performance
,”
J. Aircr.
46
,
847
855
(
2009
).
71.
P. O.
Bowles
,
T. C.
Corke
,
D. G.
Coleman
,
F. O.
Thomas
, and
M.
Wasikowski
, “
Improved understanding of aerodynamic damping through the Hilbert transform
,”
AIAA J.
52
,
2384
2394
(
2014
).
You do not currently have access to this content.