This paper proposes a nonintrusive reduced basis (RB) method based on dynamic mode decomposition (DMD) for parameterized time-dependent flows. In the offline stage, the reduced basis functions are extracted by a two-step proper orthogonal decomposition algorithm. Then, a novel hybrid DMD regression model that combines windowed DMD and optimized DMD is introduced for the temporal evolution of the RB coefficients. To improve the stability of this method for complex nonlinear problems, we introduce a threshold value to modify the DMD eigenvalues and eigenvectors. Moreover, the interpolation of the coefficients in parameter space is conducted by a feedforward neural network or random forest algorithm. The prediction of the RB solution at a new time/parameter value can be recovered at a low computational cost in the online stage, which is completely decoupled from the high-fidelity dimension. We demonstrate the performance of the proposed model with two cases: (i) laminar flow past a two-dimensional cylinder and (ii) turbulent flow around a three-dimensional SD7003 airfoil. The results show reasonable efficiency and robustness of this novel reduced-order model.

1.
M. R.
Visbal
,
R. E.
Gordnier
, and
M. C.
Galbraith
, “
High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers
,”
Exp. Fluids
46
,
903
922
(
2009
).
2.
D. J.
Garmann
,
M. R.
Visbal
, and
P. D.
Orkwis
, “
Comparative study of implicit and subgrid-scale model large-eddy simulation techniques for low-Reynolds number airfoil applications
,”
Int. J. Numer. Methods Fluids
71
,
1546
1565
(
2013
).
3.
A.
Ducoin
,
J. C.
Loiseau
, and
J. C.
Robinet
, “
Numerical investigation of the interaction between laminar to turbulent transition and the wake of an airfoil
,”
Eur. J. Mech. B-Fluids
57
,
231
248
(
2016
).
4.
S.
Pawar
,
S. M.
Rahman
,
H.
Vaddireddy
,
O.
San
,
A.
Rasheed
, and
P.
Vedula
, “
A deep learning enabler for nonintrusive reduced order modeling of fluid flows
,”
Phys. Fluids
31
,
085101
(
2019
).
5.
V.
Sekar
,
Q.
Jiang
,
C.
Shu
, and
B. C.
Khoo
, “
Fast flow field prediction over airfoils using deep learning approach
,”
Phys. Fluids
31
,
057103
(
2019
).
6.
J.
Yu
and
J. S.
Hesthaven
, “
Flowfield reconstruction method using artificial neural network
,”
AIAA J.
57
,
482
498
(
2019
).
7.
J.
Yu
,
C.
Yan
,
Z. H.
Jiang
,
W.
Yuan
, and
S. S.
Chen
, “
Adaptive non-intrusive reduced order modeling for compressible flows
,”
J. Comput. Phys.
397
,
108855
(
2019
).
8.
J.
Yu
,
C.
Yan
, and
M.
Guo
, “
Non-intrusive reduced-order modeling for fluid problems: A brief review
,”
Proc. Inst. Mech. Eng., Part G
233
,
5896
(
2019
).
9.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
(
Nauka
,
1967
).
10.
M.
Sieber
,
C. O.
Paschereit
, and
K.
Oberleithner
, “
Spectral proper orthogonal decomposition
,”
J. Fluid Mech.
792
,
798
828
(
2016
).
11.
A.
Towne
,
O. T.
Schmidt
, and
T.
Colonius
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
12.
Q.
Wang
,
J. S.
Hesthaven
, and
D.
Ray
, “
Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
,”
J. Comput. Phys.
384
,
289
307
(
2019
).
13.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,” in
Annual Review of Fluid Mechanics
, edited by
S. H.
Davis
and
P.
Moin
(Annual Reviews,
Palo Alto
,
2020
), Vol.
52
, pp.
477
508
.
14.
M.
Fossati
and
W. G.
Habashi
, “
Multiparameter analysis of aero-icing problems using proper orthogonal decomposition and multidimensional interpolation
,”
AIAA J.
51
,
946
960
(
2013
).
15.
M. C.
Yang
and
Z. X.
Xiao
, “
POD-based surrogate modeling of transitional flows using an adaptive sampling in gaussian process
,”
Int. J. Heat Fluid Flow
84
,
108596
(
2020
).
16.
H. F.
Lui
and
W. R.
Wolf
, “
Construction of reduced-order models for fluid flows using deep feedforward neural networks
,”
J. Fluid Mech.
872
,
963
994
(
2019
).
17.
Z.
Deng
,
Y.
Chen
,
Y.
Liu
, and
K. C.
Kim
, “
Time-resolved turbulent velocity field reconstruction using a long short-term memory (LSTM)-based artificial intelligence framework
,”
Phys. Fluids
31
,
075108
(
2019
).
18.
J.
Pathak
,
A.
Wikner
,
R.
Fussell
,
S.
Chandra
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model
,”
Chaos
28
,
041101
(
2018
).
19.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
20.
G. V.
Iungo
,
C.
Santoni-Ortiz
,
M.
Abkar
,
F.
Porté-Agel
,
M. A.
Rotea
, and
S.
Leonardi
, “
Data-driven reduced order model for prediction of wind turbine wakes
,”
J. Phys.
625
,
012009
(
2015
).
21.
M. H.
Naderi
,
H.
Eivazi
, and
V.
Esfahanian
, “
New method for dynamic mode decomposition of flows over moving structures based on machine learning (hybrid dynamic mode decomposition)
,”
Phys. Fluids
31
,
127102
(
2019
).
22.
J.
Kou
and
W.
Zhang
, “
An improved criterion to select dominant modes from dynamic mode decomposition
,”
Eur. J. Mech.-B/Fluids
62
,
109
129
(
2017
).
23.
M. R.
Jovanović
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
24.
S.
Le Clainche
and
J. M.
Vega
, “
Higher order dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
16
,
882
925
(
2017
).
25.
T.
Askham
and
J. N.
Kutz
, “
Variable projection methods for an optimized dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
17
,
380
416
(
2018
).
26.
X.
Zhang
,
T.
Ji
,
F.
Xie
,
H.
Zheng
, and
Y.
Zheng
, “
Unsteady flow prediction from sparse measurements by compressed sensing reduced order modeling
,”
Comput. Methods Appl. Mech. Eng.
393
,
114800
(
2022
).
27.
S.
Le Clainche
,
M.
Rosti
, and
L.
Brandt
, “
A data-driven model based on modal decomposition: Application to the turbulent channel flow over an anisotropic porous wall
,”
J. Fluid Mech.
939
,
159
(
2022
).
28.
M.
Yu
,
W.-X.
Huang
, and
C.-X.
Xu
, “
Data-driven construction of a reduced-order model for supersonic boundary layer transition
,”
J. Fluid Mech.
874
,
1096
1114
(
2019
).
29.
I.
Mezić
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlinear Dyn.
41
,
309
325
(
2005
).
30.
H.
Zhang
,
C. W.
Rowley
,
E. A.
Deem
, and
L. N.
Cattafesta
, “
Online dynamic mode decomposition for time-varying systems
,”
SIAM J. Appl. Dyn. Syst.
18
,
1586
1609
(
2019
).
31.
Y. Q.
Liu
,
J. C.
Long
,
Q.
Wu
,
B. A.
Huang
, and
G. Y.
Wang
, “
Data-driven modal decomposition of transient cavitating flow
,”
Phys. Fluids
33
,
113316
(
2021
).
32.
S.
Dawson
,
M. S.
Hemati
,
M. O.
Williams
, and
C. W.
Rowley
, “
Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition
,”
Exp. Fluids
57
,
42
(
2016
).
33.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least squares
,”
Q. Appl. Math.
2
,
164
168
(
1944
).
34.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
35.
L.
Kaufman
, “
A variable projection method for solving separable nonlinear least squares problems
,”
BIT Numer. Math.
15
,
49
57
(
1975
).
36.
H.
Eivazi
,
H.
Veisi
,
M. H.
Naderi
, and
V.
Esfahanian
, “
Deep neural networks for nonlinear model order reduction of unsteady flows
,”
Phys. Fluids
32
,
105104
(
2020
).
37.
L.-H.
Bai
and
H.
Xu
, “
Accurate storm surge forecasting using the encoder–decoder long short term memory recurrent neural network
,”
Phys. Fluids
34
,
016601
(
2022
).
38.
T.
Nakamura
,
K.
Fukami
,
K.
Hasegawa
,
Y.
Nabae
, and
K.
Fukagata
, “
Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow
,”
Phys. Fluids
33
,
025116
(
2021
).
39.
Y.
Bengio
,
Learning Deep Architectures for AI
(
Now Publishers Inc
,
2009
).
40.
B.
Karlik
and
A. V.
Olgac
, “
Performance analysis of various activation functions in generalized MLP architectures of neural networks
,”
Int. J. Artif. Intell. Expert Syst.
1
,
111
122
(
2011
).
41.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
42.
J. R.
Quinlan
, “
Induction of decision trees
,”
Mach. Learn.
1
,
81
106
(
1986
).
43.
R. J.
Lewis
, “
An introduction to classification and regression tree (CART) analysis
,” in
Annual Meeting of the Society for Academic Emergency Medicine
, San Francisco, California (
Citeseer
,
2000
), Vol.
14
.
44.
L.
Breiman
, “
Bagging predictors
,”
Mach. Learn.
24
,
123
140
(
1996
).
45.
L.
Breiman
, “
Pasting small votes for classification in large databases and on-line
,”
Mach. Learn.
36
,
85
103
(
1999
).
46.
A.
Geron
,
Hands-On Machine Learning With Scikit-Learn and Tensorflow
(
O'reilly Media, Inc.
,
Sebastopol, CA
,
2017
), p.
564
.
47.
M.
Breuer
, “
Effect of inflow turbulence on an airfoil flow with laminar separation bubble: An LES study
,”
Flow, Turbul. Combust.
101
,
433
456
(
2018
).
48.
S.
Schmidt
and
M.
Breuer
, “
Hybrid LES–URANS methodology for the prediction of non-equilibrium wall-bounded internal and external flows
,”
Comput. Fluids
96
,
226
252
(
2014
).
49.
S.
Schmidt
and
M.
Breuer
, “
Source term based synthetic turbulence inflow generator for eddy-resolving predictions of an airfoil flow including a laminar separation bubble
,”
Comput. Fluids
146
,
1
22
(
2017
).
50.
P.
Catalano
and
R.
Tognaccini
, “
Influence of free-stream turbulence on simulations of laminar separation bubbles
,” AIAA Paper No. 2009-1471, 2009.
51.
M.
Galbraith
and
M.
Visbal
, “
Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil
,” AIAA Paper No. 2008-225, 2008.
52.
C.
De Santis
,
P.
Catalano
, and
R.
Tognaccini
, “
Model for enhancing turbulent production in laminar separation bubbles
,”
AIAA J.
60
,
473
487
(
2022
).
You do not currently have access to this content.