Flexible structures within a non-uniform inflow may undergo complex vortex-induced vibrations (VIV) containing multiple frequencies and vibration modes. Therefore, the critical question arises on whether and how a flexible cylinder's structural response and fluid forces undergoing multi-frequency vibrations resemble or differ from mono-frequency vibrations. Therefore, we experimentally studied the problem of dual-frequency VIV of a stepped flexible cylinder, viz., a large-aspect ratio flexible cylinder consisting of two segments with different diameters and rigid cylinder forced vibration experiments. The results show that the maximum in-line (IL) and cross-flow (CF) displacements and the frequency ratio of the stepped cylinder separated by individual frequency resemble those of a uniform cylinder vibrating in the uniform flow at a single frequency. In addition, it is found that forced vibration results from rigid cylinders undergoing multi-frequency IL and CF motion can improve the prediction of the multi-frequency flexible cylinder VIV, provided the amplitudes and phases, as well as the true reduced velocity Vr for each of the dual frequencies match, especially when Vr[4,8].

1.
H.
Zhu
,
J.
Hu
, and
Y.
Gao
, “
Severe slug flow-induced nonlinear dynamic behavior of a flexible catenary riser
,”
Phys. Fluids
33
,
071705
(
2021
).
2.
H.
Zhu
and
H.
Zhao
, “
Solid-structure impact pattern of a vortex-induced oscillating flexible pipeline in the vicinity of a bottom wall boundary
,”
Phys. Fluids
33
,
061704
(
2021
).
3.
H.
Zhu
,
H.
Zhao
,
Y.
Xie
, and
X.
Zhang
, “
Experimental investigation on the alteration of natural frequency of a flexible pipe adjacent to a bottom plane with the consideration of pipe-plane impact
,”
Phys. Fluids
34
,
047106
(
2022
).
4.
C. H. K.
Williamson
and
R.
Govardhan
, “
Vortex-induced vibrations
,”
Annu. Rev. Fluid Mech.
36
,
413
455
(
2004
).
5.
R. D.
Gabbai
and
H.
Benaroya
, “
An overview of modeling and experiments of vortex-induced vibration of circular cylinders
,”
J. Sound Vib.
282
,
575
616
(
2005
).
6.
P. W.
Bearman
, “
Circular cylinder wakes and vortex-induced vibrations
,”
J. Fluids Struct.
27
,
648
658
(
2011
).
7.
J.-S.
Wang
,
D.
Fan
, and
K.
Lin
, “
A review on flow-induced vibration of offshore circular cylinders
,”
J. Hydrodyn.
32
,
415
440
(
2020
).
8.
L.
Ma
,
K.
Lin
,
D.
Fan
,
J.
Wang
, and
M. S.
Triantafyllou
, “
Flexible cylinder flow-induced vibration
,”
Phys. Fluids
34
,
011302
(
2022
).
9.
F. J.
Huera-Huarte
and
P. W.
Bearman
, “
Wake structures and vortex-induced vibrations of a long flexible cylinder. Part 1: Dynamic response
,”
J. Fluids Struct.
25
,
969
990
(
2009
).
10.
F. J.
Huera-Huarte
and
P. W.
Bearman
, “
Wake structures and vortex-induced vibrations of a long flexible cylinder. Part 2: Drag coefficients and vortex modes
,”
J. Fluids Struct.
25
,
991
1006
(
2009
).
11.
J. R.
Chaplin
,
P. W.
Bearman
,
F. J.
Huera-Huarte
, and
R. J.
Pattenden
, “
Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current
,”
J. Fluids Struct.
21
,
3
24
(
2005
).
12.
D.
Fan
,
Z.
Wang
,
M. S.
Triantafyllou
, and
G. M.
Karniadakis
, “
Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow
,”
J. Fluid Mech.
881
,
815
858
(
2019
).
13.
D. J.
Newman
and
G. E.
Karniadakis
, “
Simulations of flow over a flexible cable: A comparison of forced and flow-induced vibration
,”
J. Fluids Struct.
10
,
439
453
(
1996
).
14.
D. J.
Newman
and
G. E.
Karniadakis
, “
A direct numerical simulation study of flow past a freely vibrating cable
,”
J. Fluid Mech.
344
,
95
136
(
1997
).
15.
Z.
Wang
,
D.
Fan
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
A large-eddy simulation study on the similarity between free vibrations of a flexible cylinder and forced vibrations of a rigid cylinder
,”
J. Fluids Struct.
101
,
103223
(
2021
).
16.
M.
Tognarelli
,
S.
Slocum
,
W.
Frank
,
R.
Campbell
 et al., “
VIV response of a long flexible cylinder in uniform and linearly sheared currents
,” in Proceedings of the
Offshore Technology Conference
(
Offshore Technology Conference
,
2004
).
17.
H.
Braaten
and
H.
Lie
, “
NDP riser high mode VIV tests
,” Technical Report No. MT51 F05-072/512394.00.01 (
Norwegian Marine Technology Research Institute
,
2004
), p.
01
.
18.
A.
Trim
,
H.
Braaten
,
H.
Lie
, and
M.
Tognarelli
, “
Experimental investigation of vortex-induced vibration of long marine risers
,”
J. Fluids Struct.
21
,
335
361
(
2005
).
19.
J. K.
Vandiver
,
S. B.
Swithenbank
,
V.
Jaiswal
, and
V.
Jhingran
, “
Fatigue damage from high mode number vortex-induced vibration
,” in
Proceedings of the 25th OMAE Conference, Germany
, 4-6 June 2006.
20.
Y.
Modarres-Sadeghi
,
F.
Chasparis
,
M. S.
Triantafyllou
,
M.
Tognarelli
, and
P.
Beynet
, “
Chaotic response is a generic feature of vortex-induced vibrations of flexible risers
,”
J. Sound Vib.
330
,
2565
2579
(
2011
).
21.
Y.
Modarres-Sadeghi
,
H.
Mukundan
,
J. M.
Dahl
,
F. S.
Hover
, and
M. S.
Triantafyllou
, “
The effect of higher harmonic forces on fatigue life of marine risers
,”
J. Sound Vib.
329
,
43
55
(
2010
).
22.
F.
Webster
, “
Vertical profiles of horizontal ocean currents
,”
Deep Sea Res. Oceanogr. Abstr.
16
,
85
98
(
1969
).
23.
L. K.
Shay
,
R. L.
Elsberry
, and
P. G.
Black
, “
Vertical structure of the ocean current response to a hurricane
,”
J. Phys. Oceanogr.
19
,
649
669
(
1989
).
24.
Y.-H.
Kim
,
J.
Vandiver
, and
R.
Holler
, “
Vortex-induced vibration and drag coefficients of long cables subjected to sheared flows
,”
J. Energy Resour. Technol.
108
,
77
83
(
1986
).
25.
H.
Marcollo
,
H.
Chaurasia
, and
J. K.
Vandiver
, “
Phenomena observed in VIV bare riser field tests
,” in
Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2007
), pp.
989
995
.
26.
J. K.
Vandiver
and
A.
Marcollo
, “
High mode number VIV experiments
,” in
Proceedings of the IUTAM Symposium on Integrated Modeling of Fully Coupled Fluid Structure Interactions Using Analysis, Computations and Experiments
(
Springer
,
2003
), pp.
211
231
.
27.
D.
Lucor
,
L.
Imas
, and
G. E.
Karniadakis
, “
Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows
,”
J. Fluids Struct.
15
,
641
650
(
2001
).
28.
R.
Bourguet
,
G. E.
Karniadakis
, and
M. S.
Triantafyllou
, “
Vortex-induced vibrations of a long flexible cylinder in shear flow
,”
J. Fluid Mech.
677
,
342
382
(
2011
).
29.
R.
Bourguet
,
G. E.
Karniadakis
, and
M. S.
Triantafyllou
, “
Multi-frequency vortex-induced vibrations of a long tensioned beam in linear and exponential shear flows
,”
J. Fluids Struct.
41
,
33
42
(
2013
).
30.
R.
Bourguet
,
G. E.
Karniadakis
, and
M. S.
Triantafyllou
, “
Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow
,”
J. Fluid Mech.
717
,
361
375
(
2013
).
31.
R.
Bourguet
,
Y.
Modarres-Sadeghi
,
G. E.
Karniadakis
, and
M. S.
Triantafyllou
, “
Wake-body resonance of long flexible structures is dominated by counterclockwise orbits
,”
Phys. Rev. Lett.
107
,
134502
(
2011
).
32.
J.
Vandiver
,
Shear7 Program User Manual
(
Massachusetts Institute of Technology
,
Cambridge, MA
,
1999
).
33.
M. S.
Triantafyllou
,
G. S.
Triantafyllou
,
Y. S.
Tein
, and
B. D.
Ambrose
, “
Pragmatic riser VIV analysis
,” in
Proceedings of the Offshore Technology Conference
(
Offshore Technology Conference
,
1999
).
34.
D.
Fan
,
G.
Jodin
,
T.
Consi
,
L.
Bonfiglio
,
Y.
Ma
,
L.
Keyes
,
G. E.
Karniadakis
, and
M. S.
Triantafyllou
, “
A robotic intelligent towing tank for learning complex fluid-structure dynamics
,”
Sci. Rob.
4
,
eaay5063
(
2019
).
35.
D.
Fan
and
M. S.
Triantafyllou
, “
Vortex-induced vibration of riser with low span to diameter ratio buoyancy modules
,” in
Proceedings of the 27th International Offshore and Polar Engineering Conference
(
International Society of Offshore and Polar Engineers
,
2017
).
36.
R.
Gopalkrishnan
, “
Vortex-induced forces on oscillating bluff cylinders
,” Technical Report No. 93-11658 (
Woods Hole Oceanographic Institution
,
1993
).
37.
J. M.
Dahl
,
F. S.
Hover
,
M. S.
Triantafyllou
,
S.
Dong
, and
G. E.
Karniadakis
, “
Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces
,”
Phys. Rev. Lett.
99
,
144503
(
2007
).
38.
G. S.
Triantafyllou
and
G. E.
Karniadakis
, “
Forces on a vibrating cylinder in steady cross-flow
,” in
Proceedings of the 8th International Conference on Offshore Mechanics and Arctic Engineering
(ISOPE,
1989
), pp.
247
252
.
39.
M.
Nakano
and
D.
Rockwell
, “
The wake from a cylinder subjected to amplitude-modulated excitation
,”
J. Fluid Mech.
247
,
79
110
(
1993
).
40.
M.
Nakano
and
D.
Rockwell
, “
Flow structure in the frequency-modulated wake of a cylinder
,”
J. Fluid Mech.
266
,
93
119
(
1994
).
41.
D.
Fan
,
H.
Du
, and
M. S.
Triantafyllou
, “
Optical tracking measurement on vortex-induced vibration of flexible riser with short-length buoyance module
,” in
Proceedings of the APS Division of Fluid Dynamics, Portland OR
, 22 November 2016.
42.
Z.
Wang
,
D.
Fan
, and
M. S.
Triantafyllou
, “
Illuminating the complex role of the added mass during vortex induced vibration
,”
Phys. Fluids
33
,
085120
(
2021
).
43.
Z.
Wang
,
A.
Li
,
B.
Wu
,
D.
Fan
,
M. S.
Triantafyllou
, and
D.
Tang
, “
Asymmetric vortex pair induces secondary traveling wave vibration of a flexible cylinder from still water to incoming flow
,”
Phys. Fluids
33
,
125115
(
2021
).
44.
K.
Lin
,
D.
Fan
, and
J.
Wang
, “
Dynamic response and hydrodynamic coefficients of a cylinder oscillating in crossflow with an upstream wake interference
,”
Ocean Eng.
209
,
107520
(
2020
).
45.
J. J. M.
Dahl
, “
Vortex-induced vibration of a circular cylinder with combined in-line and cross-flow motion
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2008
).
46.
H.
Zheng
, “
The influence of high harmonic force on fatigue life and its prediction via coupled inline-crossflow VIV modeling
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2014
).
47.
R.
Gopalkrishnan
,
M. S.
Triantafyllou
,
M.
Grosenbaugh
 et al., “
Influence of amplitude modulation on the fluid forces acting on a vibrating cylinder in cross-flow
,” in
Proceedings of the 1st International Offshore and Polar Engineering Conference
(
International Society of Offshore and Polar Engineers
,
1991
).
48.
M.
Nakano
and
D.
Rockwell
, “
Decoupling of locked-in vortex formation by amplitude-modulated excitation
,”
J. Fluids Struct.
5
,
455
458
(
1991
).
49.
M.
Nakano
and
D.
Rockwell
, “
Destabilization of the Karman vortex street by frequency-modulated excitation
,”
Phys. Fluids A: Fluid Dyn.
3
,
723
725
(
1991
).
You do not currently have access to this content.