Field inversion and machine learning are implemented in this study to describe three-dimensional (3D) separation flow around an axisymmetric hill and augment the Spalart–Allmaras (SA) model. The discrete adjoint method is used to solve the field inversion problem, and an artificial neural network is used as the machine learning model. A validation process for field inversion is proposed to adjust the hyperparameters and obtain a physically acceptable solution. The field inversion result shows that the non-equilibrium turbulence effects in the boundary layer upstream of the mean separation line and in the separating shear layer dominate the flow structure in the 3D separating flow, which agrees with prior physical knowledge. However, the effect of turbulence anisotropy on the mean flow appears to be limited. Two approaches are proposed and implemented in the machine learning stage to overcome the problem of sample imbalance while reducing the computational cost during training. The results are all satisfactory, which proves the effectiveness of the proposed approaches.

1.
T. B.
Gatski
and
C. G.
Speziale
, “
On explicit algebraic stress models for complex turbulent flows
,”
J. Fluid Mech.
254
,
59
(
1993
).
2.
C.
Rumsey
, “
Exploring a method for improving turbulent separated-flow predictions with k-ω models
,” NASA/TM-2009-215952,
2009
.
3.
T.
Cebeci
and
F.
Kafyeke
, “
Aircraft icing
,”
Annu. Rev. Fluid Mech.
35
,
11
(
2003
).
4.
M.
Mani
,
D.
Babcock
,
C.
Winkler
, and
P. R.
Spalart
, “
Predictions of a supersonic turbulent flow in a square duct
,” in
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
2013
).
5.
C. L.
Rumsey
,
J. R.
Carlson
,
T. H.
Pulliam
, and
P. R.
Spalart
, “
Improvements to the quadratic constitutive relation based on NASA juncture flow data
,”
AIAA J.
58
,
4374
(
2020
).
6.
M. L.
Shur
,
M. K.
Strelets
,
A. K.
Travin
, and
P. R.
Spalart
, “
Turbulence modeling in rotating and curved channels: Assessing the Spalart–Shur correction
,”
AIAA J.
38
,
784
(
2000
).
7.
J.
Dacles-Mariani
,
G. G.
Zilliac
,
J. S.
Chow
, and
P.
Bradshaw
, “
Numerical/experimental study of a wingtip vortex in the near field
,”
AIAA J.
33
,
1561
(
1995
).
8.
C.
Wang
,
Y. J.
Jang
, and
M. A.
Leschziner
, “
Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures
,”
Int. J. Heat Fluid Flow
25
,
499
(
2004
).
9.
M.
García-Villalba
,
N.
Lin
,
W.
Rodi
, and
M. A.
Leschziner
, “
Large-eddy simulation of separated flow over a three-dimensional axisymmetric hill
,”
J. Fluid Mech.
627
,
55
(
2009
).
10.
R. L.
Simpson
,
C. H.
Long
, and
G.
Byun
, “
Study of vortical separation from an axisymmetric hill
,”
Int. J. Heat Fluid Flow
23
,
582
(
2002
).
11.
G.
Byun
,
R. L.
Simpson
, and
C. H.
Long
, “
Study of vortical separation from three-dimensional symmetric bumps
,”
AIAA J.
42
,
754
(
2004
).
12.
J. H.
Bell
,
J. T.
Heineck
,
G.
Zilliac
,
R.
Mehta
, and
K.
Long
, “
Surface and flow field measurements on the FAITH hill model
,” AIAA Paper No. 2012-0704,
2012
.
13.
O.
Williams
,
M.
Samuell
,
E.
Sarwas
,
M.
Robbins
, and
A.
Ferrante
, “
Experimental study of a CFD validation test case for turbulent separated flows
,” in
AIAA Scitech 2020 Forum
(
2020
).
14.
A.
Gargiulo
,
J.
Duetsch-Patel
,
T.
Ozoroski
,
C.
Beardsley
,
V.
Vishwanathan
,
D.
Fritsch
,
A.
Borgoltz
,
W.
Devenport
,
C.
Roy
, and
T.
Lowe
, “
Flow field features of the BEVERLI hill model
,” in
AIAA Scitech 2021 Forum
(
2021
).
15.
W.
Haase
,
B.
Aupoix
,
U.
Bunge
, and
D.
Schwamborn
, “
FLOMANIA—A European initiative on flow physics modelling
,” Results of the European-Union funded project, 2002–2004.
16.
H.
Li
,
Y.
Zhang
, and
H.
Chen
, “
Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model
,”
AIAA J.
58
,
3863
(
2020
).
17.
H.
Li
,
Y.
Zhang
, and
H.
Chen
, “
Numerical simulation of iced wing using separating shear layer fixed turbulence models
,”
AIAA J.
59
,
3667
(
2021
).
18.
M.
Rahman
,
R. K.
Agarwal
,
M.
Lampinen
, and
T.
Siikonen
, “
Improvements to Rahman-Agarwal-Siikonen one-equation turbulence model based on k-epsilon closure
,” in
AIAA Theoretical Fluid Mechanics Conference
(
2014
).
19.
J.
Ho
and
A.
West
, “
Field inversion and machine learning for turbulence modelling applied to three-dimensional separated flows
,” in
AIAA Aviation 2021 Forum
(
2021
).
20.
K.
Duraisamy
,
G.
Iaccarino
, and
H.
Xiao
, “
Turbulence modeling in the age of data
,”
Annu. Rev. Fluid Mech.
51
,
357
(
2019
).
21.
H.
Xiao
and
P.
Cinnella
, “
Quantification of model uncertainty in RANS simulations: A review
,”
Prog. Aerosp. Sci.
108
,
1
(
2019
).
22.
J. X.
Wang
,
J. L.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
,
034603
(
2017
).
23.
J. L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
3
,
074602
(
2018
).
24.
L.
Zhu
,
W.
Zhang
,
J.
Kou
, and
Y.
Liu
, “
Machine learning methods for turbulence modeling in subsonic flows around airfoils
,”
Phys. Fluids
31
,
015105
(
2019
).
25.
C. A. M.
Ströfer
and
H.
Xiao
, “
End-to-end differentiable learning of turbulence models from indirect observations
,”
Theor. Appl. Mech. Lett.
11
,
100280
(
2021
).
26.
C. A. M.
Ströfer
,
X. L.
Zhang
, and
H.
Xiao
, “
Ensemble gradient for learning turbulence models from indirect observations
,”
Commun. Comput. Phys.
30
,
1269
(
2021
).
27.
K.
Duraisamy
,
Z. J.
Zhang
, and
A. P.
Singh
, “
New approaches in turbulence and transition modeling using data driven techniques
,” AIAA Paper No. 2015-1284,
2015
.
28.
E. J.
Parish
and
K.
Duraisamy
, “
A paradigm for data-driven predictive modeling using field inversion and ma-chine learning
,”
J. Comput. Phys.
305
,
758
(
2016
).
29.
A. P.
Singh
,
S.
Medida
, and
K.
Duraisamy
, “
Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
,”
AIAA J.
55
,
2215
(
2017
).
30.
A.
Ferrero
,
A.
Iollo
, and
F.
Larocca
, “
Field inversion for data-augmented RANS modelling in turbomachinery flows
,”
Comput. Fluids
201
,
104474
(
2020
).
31.
M.
Yang
and
Z.
Xiao
, “
Improving the k–w–g–Ar transition model by the field inversion and machine learning framework
,”
Phys. Fluid
32
,
064101
(
2020
).
32.
M.
Emory
,
J.
Larsson
, and
G.
Iaccarino
, “
Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
,”
Phys. Fluids
25
,
110822
(
2013
).
33.
J.
Ray
,
S.
Lefantzi
,
S.
Arunajatesan
, and
L.
Dechant
, “
Learning an eddy viscosity model using shrinkage and Bayesian calibration: A jet-in-crossflow case study
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
4
,
011001
(
2018
).
34.
H.
Kato
and
S.
Obayashi
, “
Approach for uncertainty of turbulence modeling based on data assimilation technique
,”
Comput. Fluids
85
,
2
(
2013
).
35.
H.
Xiao
,
J. L.
Wu
,
J. X.
Wang
,
R.
Sun
, and
C. J.
Roy
, “
Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian approach
,”
J. Comput. Phys.
324
,
115
(
2016
).
36.
Y.
Yin
,
P.
Yang
,
Y.
Zhang
,
H.
Chen
, and
S.
Fu
, “
Feature selection and processing of turbulence modeling based on an artificial neural network
,”
Phys. Fluids
32
,
105117
(
2020
).
37.
S. B.
Pope
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
,
331
(
1975
).
38.
J.
Ling
,
R.
Jones
, and
J.
Templeton
, “
Machine learning strategies for systems with invariance properties
,”
J. Comput. Phys.
318
,
22
(
2016
).
39.
M.
Schmelzer
,
R. P.
Dwight
, and
P.
Cinnella
, “
Discovery of algebraic Reynolds-stress models using sparse symbolic regression
,”
Flow Turbul. Combust.
104
,
579
(
2020
).
40.
Y.
Zhao
,
H. D.
Akolekar
,
J.
Weatheritt
,
V.
Michelassi
, and
R. D.
Sandberg
, “
Turbulence model development using CFD-driven machine learning
,”
J. Comput. Phys.
411
,
109413
(
2020
).
41.
Y. Z.
Zhang
,
C.
Cheng
,
Y. T.
Fan
,
G. H.
Li
, and
W. P.
Li
, “
Data-driven correction of turbulence model with physics knowledge constrains in channel flow
,”
Acta Aeronaut. Astron. Sin.
41
,
123282
(
2020
).
42.
P. R.
Spalart
and
S. R.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” in
30th Aerospace Sciences Meeting and Exhibit
,
1992
.
43.
P. R.
Spalart
, “
Strategies for turbulence modelling and simulations
,”
Int. J. Heat Fluid Flow
21
,
252
(
2000
).
44.
P. E.
Gill
,
W.
Murray
, and
M. A.
Saunders
, “
SNOPT: An SQP algorithm for large-scale constrained optimization
,”
SIAM Rev.
47
,
99
(
2005
).
45.
J.
Elliott
and
J.
Peraire
, “
Practical three-dimensional aerodynamic design and optimization using unstructured meshes
,”
AIAA J.
35
,
1479
(
1997
).
46.
E.
Nielsen
and
W.
Anderson
, “
Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations
,”
AIAA J.
37
,
1411
(
1999
).
47.
G. K. W.
Kenway
,
C. A.
Mader
,
P.
He
, and
J. R. R. A.
Martins
, “
Effective adjoint approaches for computational fluid dynamics
,”
Prog. Aerosp. Sci.
110
,
100542
(
2019
).
48.
L.
Hascoet
and
V.
Pascual
, “
The Tapenade automatic differentiation tool: Principles, model, and specification
,”
ACM Trans. Math. Software, Assoc. Comput. Mach.
39
,
1
(
2013
).
49.
P. R.
Spalart
,
S.
Deck
,
M. L.
Shur
,
K. D.
Squires
,
M. K.
Strelets
, and
A.
Travin
, “
A new version of detached-eddy simulation, resistant to ambiguous grid densities
,”
Theor. Comput. Fluid Dyn.
20
,
181
(
2006
).
50.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
33rd Conference on Neural Information Processing Systems
(
NeurIPS
,
2019
).
51.
F. B.
Gessner
and
J. B.
Jones
, “
On some aspects of fully-developed turbulent flow in rectangular channels
,”
J. Fluid Mech.
23
,
689
(
1965
).
52.
A.
Huser
and
S.
Biringen
, “
Direct numerical simulation of turbulent flow in a square duct
,”
J. Fluid Mech.
257
,
65
(
1993
).
53.
R.
Rashad
and
D. W.
Zingg
, “
Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach
,”
AIAA J.
54
,
3321
(
2016
).
54.
G.
Byun
and
R. L.
Simpson
, “
Structure of three-dimensional separated flow on an axisymmetric bump
,”
AIAA J.
44
,
999
(
2006
).
55.
R.
Abid
,
C.
Rumsey
, and
T.
Gatski
, “
Prediction of nonequilibrium turbulent flows with explicit algebraic stress models
,”
AIAA J.
33
,
2026
(
1995
).
56.
Y. H.
Yin
,
H. R.
Li
,
Y. F.
Zhang
, and
H. X.
Chen
, “
Application of machine learning assisted turbulence modeling in flow separation prediction” (in Chinese)
,”
Acta Aerodyn. Sin.
39
,
23
(
2021
).
You do not currently have access to this content.