The velocity perturbations and Reynolds stresses associated with finite-amplitude Holmboe instabilities are investigated using linear stability analysis, numerical simulations, and laboratory experiments. The rightward and leftward propagating Holmboe instabilities are separated, allowing for a direct comparison of the perturbation fields between the numerical simulations and the linear stability analysis. The decomposition and superposition of the perturbation fields provide insights into the structure and origin of Reynolds stresses in Holmboe instabilities. Shear instabilities in stratified flows introduce a directional preference (anisotropy) in velocity perturbation fields, thereby generating Reynolds stresses. Here, we investigate this anisotropy by comparing pairs of horizontal and vertical velocity perturbations (u,w), obtained from the simulations and the laboratory experiment, with predictions from linear stability analysis. For an individual Holmboe mode, both the simulations and linear theory yield elliptical (u,w)-pairs that are oriented toward the second and fourth quadrants (uw<0), corresponding to the tilted elliptical trajectories of particle movement. Combining the leftward and rightward Holmboe modes yields (u,w) ellipses whose orientation and aspect ratio are phase-dependent. When averaged over a full cycle, the joint probability density functions of (u,w) in the linear theory and single wavelength simulations exhibit “steering wheel” structures. This steering wheel is smeared out in multiple wavelength simulations and the laboratory experiment due to varying wavelengths, resulting in an elliptical cloud. All of the approaches adopted in the present study yield Reynolds stresses that are comparable to those reported in previous laboratory and field investigations.

1.
S. A.
Thorpe
, “
Experiments on the instability of stratified shear flows: Miscible fluids
,”
J. Fluid Mech.
46
,
299
319
(
1971
).
2.
W. D.
Smyth
and
J. N.
Moum
, “
Ocean mixing by Kelvin-Helmholtz instability
,”
Oceanography
25
,
140
149
(
2012
).
3.
J.
Holmboe
, “
On the behavior of symmetric waves in stratified shear layers
,”
Geophys. Publ.
24
,
67
113
(
1962
).
4.
F. K.
Browand
and
C. D.
Winant
, “
Laboratory observations of shear-layer instability in a stratified fluid
,”
Bound.-Layer Meteorol.
5
,
67
77
(
1973
).
5.
H.
Salehipour
,
C. P.
Caulfield
, and
W. R.
Peltier
, “
Turbulent mixing due to the Holmboe wave instability at high Reynolds number
,”
J. Fluid Mech.
803
,
591
621
(
2016
).
6.
K. M.
Smith
,
C. P.
Caulfield
, and
J. R.
Taylor
, “
Turbulence in forced stratified shear flows
,”
J. Fluid Mech.
910
,
A42
(
2021
).
7.
A. K.
Kaminski
,
E. A.
D'Asaro
,
A. Y.
Shcherbina
, and
R. R.
Harcourt
, “
High-resolution observations of the North Pacific transition layer from a Lagrangian float
,”
J. Phys. Oceanogr.
51
,
3163
3181
(
2021
).
8.
H.
van Haren
, “
Stratified turbulence and small-scale internal waves above deep-ocean topography
,”
Phys. Fluids
25
,
106604
(
2013
).
9.
R.
Plougonven
and
F.
Zhang
, “
Internal gravity waves from atmospheric jets and fronts
,”
Rev. Geophys.
52
,
33
76
, (
2014
).
10.
E. W.
Tedford
,
J. R.
Carpenter
,
R.
Pawlowicz
,
R.
Pieters
, and
G. A.
Lawrence
, “
Observation and analysis of shear instability in the Fraser River estuary
,”
J. Geophys. Res. Oceans
114
,
C11006
, (
2009
).
11.
N. C.
Delpeche
,
T.
Soomere
, and
M.-J.
Lilover
, “
Diapycnal mixing and internal waves in the Saint John River Estuary, New Brunswick, Canada with a discussion relative to the Baltic Sea
,”
Est. J. Eng.
16
,
157
(
2010
).
12.
P.
Held
,
K.
Bartholomä-Schrottke
, and
A.
Bartholomä
, “
Indications for the transition of Kelvin-Helmholtz instabilities into propagating internal waves in a high turbid estuary and their effect on the stratification stability
,”
Geo-Mar. Lett.
39
,
149
159
(
2019
).
13.
S.
Yoshida
,
M.
Ohtani
,
S.
Nishida
, and
P. F.
Linden
, “
Mixing processes in a highly stratified river
,”
Coastal and Estuarine Studies
, Vol, 54
389
400
(
1998
).
14.
G. A.
Douillet
,
Q.
Chaffaut
,
F.
Schlunegger
,
U.
Kueppers
, and
D. B.
Dingwell
, “
Shark-fins: Overturned patterns linked to shear instabilities at the flow-bed boundary. Examples from the deposits of the 2006 pyroclastic currents at Tungurahua volcano (Ecuador)
,” EarthArXiv (
2018
).
15.
W. D.
Smyth
and
K. B.
Winters
, “
Turbulence and mixing in Holmboe waves
,”
J. Phys. Oceanogr.
33
,
694
711
(
2003
).
16.
A. J. K.
Yang
,
E. W.
Tedford
, and
G. A.
Lawrence
, “
The spatial evolution of velocity and density profiles in an arrested salt wedge
,”
Theor. Appl. Mech. Lett.
9
,
403
408
(
2019
).
17.
C.
Wunsch
and
R.
Ferrari
, “
Vertical mixing, energy, and the general circulation of the oceans
,”
Annu. Rev. Fluid Mech.
36
,
281
314
(
2004
).
18.
M. C.
Gregg
,
E. A.
D'Asaro
,
J. J.
Riley
, and
E.
Kunze
, “
Mixing efficiency in the ocean
,”
Annu. Rev. Mar. Sci.
10
,
443
473
(
2018
).
19.
J. R.
Carpenter
,
E. W.
Tedford
,
M.
Rahmani
, and
G. A.
Lawrence
, “
Holmboe wave fields in simulation and experiment
,”
J. Fluid Mech.
648
,
205
223
(
2010
).
20.
G. A.
Lawrence
,
F. K.
Browand
, and
L. G.
Redekopp
, “
The stability of a sheared density interface
,”
Phys. Fluids A
3
,
2360
2370
(
1991
).
21.
O.
Pouliquen
,
J. M.
Chomaz
, and
P.
Huerre
, “
Propagating Holmboe waves at the interface between two immiscible fluids
,”
J. Fluid Mech.
266
,
277
302
(
1994
).
22.
D. Z.
Zhu
and
G. A.
Lawrence
, “
Holmboe's instability in exchange flows
,”
J. Fluid Mech.
429
,
391
409
(
2001
).
23.
A. M.
Hogg
and
G. N.
Ivey
, “
The Kelvin-Helmholtz to Holmboe instability transition in stratified exchange flows
,”
J. Fluid Mech.
477
,
339
362
(
2003
).
24.
E. W.
Tedford
,
R.
Pieters
, and
G. A.
Lawrence
, “
Symmetric Holmboe instabilities in a laboratory exchange flow
,”
J. Fluid Mech.
636
,
137
153
(
2009
).
25.
A. J. K.
Yang
,
E. W.
Tedford
,
J.
Olsthoorn
, and
G. A.
Lawrence
, “
Asymmetric Holmboe instabilities in arrested salt-wedge flows
,”
Phys. Fluids
34
,
036601
(
2022
).
26.
J. R.
Carpenter
,
N. J.
Balmforth
, and
G. A.
Lawrence
, “
Identifying unstable modes in stratified shear layers
,”
Phys. Fluids
22
,
054104
(
2010
).
27.
J. R.
Carpenter
and
A.
Guha
, “
Instability of a smooth shear layer through wave interactions
,”
Phys. Fluids
31
,
081701
(
2019
).
28.
D.
Lucas
,
C. P.
Caulfield
, and
R. R.
Kerswell
, “
Layer formation in horizontally forced stratified turbulence: Connecting exact coherent structures to linear instabilities
,”
J. Fluid Mech.
832
,
409
437
(
2017
).
29.
G. N.
Ivey
,
K. B.
Winters
, and
J. R.
Koseff
, “
Density stratification, turbulence, but how much mixing?
,”
Annu. Rev. Fluid Mech.
40
,
169
184
(
2008
).
30.
P.
Odier
and
R. E.
Ecke
, “
Stability, intermittency and universal Thorpe length distribution in a laboratory turbulent stratified shear flow
,”
J. Fluid Mech.
815
,
243
256
(
2017
).
31.
C. J.
Lang
and
M. L.
Waite
, “
Scale-dependent anisotropy in forced stratified turbulence
,”
Phys. Rev. Fluids
4
,
044801
(
2019
).
32.
T.
Hanson
,
M.
Stastna
, and
A.
Coutino
, “
Stratified shear instability in the cabbeling regime
,”
Phys. Rev. Fluids
6
,
084802
(
2021
).
33.
A.
Lefauve
and
P. F.
Linden
, “
Experimental properties of continuously forced, shear-driven, stratified turbulence. Part 2. Energetics, anisotropy, parameterisation
,”
J. Fluid Mech.
937
,
A35
(
2022
).
34.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
1972
).
35.
R.
Preisendorfer
, “
Principal component analysis in meteorology and oceanography
,”
Elsevier
17
,
425
(
1988
).
36.
P. K.
Kundu
,
I. M.
Cohen
, and
D. R.
Dowling
,
Fluid Mechanics
(
Elsevier
,
2016
).
37.
S.
Waterman
and
J. M.
Lilly
, “
Geometric decomposition of eddy feedbacks in barotropic systems
,”
J. Phys. Oceanogr.
45
,
1009
1024
(
2015
).
38.
B. J.
Hoskins
,
I. N.
James
, and
G. H.
White
, “
The shape, propagation and mean-flow interaction of large-scale weather systems
,”
J. Atmos. Sci.
40
,
1595
1612
(
1983
).
39.
D. P.
Marshall
,
J. R.
Maddison
, and
P. S.
Berloff
, “
A framework for parameterizing eddy potential vorticity fluxes
,”
J. Phys. Oceanogr.
42
,
539
557
(
2012
).
40.
T.
Tamarin
,
J. R.
Maddison
,
E.
Heifetz
, and
D. P.
Marshall
, “
A geometric interpretation of eddy Reynolds stresses in barotropic ocean jets
,”
J. Phys. Oceanogr.
46
,
2285
2307
(
2016
).
41.
M. B.
Poulsen
,
M.
Jochum
,
J. R.
Maddison
,
D. P.
Marshall
, and
R.
Nuterman
, “
A geometric interpretation of southern ocean eddy form stress
,”
J. Phys. Oceanogr.
49
,
2553
2570
(
2019
).
42.
H.
van Haren
and
L.
Gostiaux
, “
A deep-ocean Kelvin-Helmholtz billow train
,”
Geophys. Res. Lett.
37
,
L03605
, (
2010
).
43.
P.
Hazel
, “
Numerical studies of the stability of inviscid stratified shear flows
,”
J. Fluid Mech.
51
,
39
61
(
1972
).
44.
J. S.
Turner
,
Buoyancy Effects in Fluids
(
Cambridge University Press
,
1979
).
45.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
2004
).
46.
W. D.
Smyth
and
J. R.
Carpenter
,
Instability in Geophysical Flows
(
Cambridge University Press
,
2019
).
47.
C.
Caulfield
, “
Layering, instabilities, and mixing in turbulent stratified flows
,”
Annu. Rev. Fluid Mech.
53
,
113
145
(
2021
).
48.
D.
Koppel
, “
On the stability of flow of a thermally stratified fluid under the action of gravity
,”
J. Math. Phys.
5
,
963
982
(
1964
).
49.
S. P.
Haigh
and
G. A.
Lawrence
, “
Symmetric and nonsymmetric Holmboe instabilities in an inviscid flow
,”
Phys. Fluids
11
,
1459
1468
(
1999
).
50.
A.
Lefauve
,
J. L.
Partridge
,
Q.
Zhou
,
S. B.
Dalziel
,
C. P.
Caulfield
, and
P. F.
Linden
, “
The structure and origin of confined Holmboe waves
,”
J. Fluid Mech.
848
,
508
544
(
2018
).
51.
W. D.
Smyth
,
G. P.
Klaassen
, and
W. R.
Peltier
, “
Finite amplitude Holmboe waves
,”
Geophys. Astrophys. Fluid Dyn.
43
,
181
222
(
1988
).
52.
T. R.
Osborn
, “
Estimates of the local rate of vertical diffusion from dissipation measurements
,”
J. Phys. Oceanogr.
10
,
83
89
(
1980
).
53.
L. H.
Shih
,
J. R.
Koseff
,
G. N.
Ivey
, and
J. H.
Ferziger
, “
Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations
,”
J. Fluid Mech.
525
,
193
214
(
2005
).
54.
G. D.
Portwood
,
S. M.
de Bruyn Kops
, and
C. P.
Caulfield
, “
Asymptotic dynamics of high dynamic range stratified turbulence
,”
Phys. Rev. Lett.
122
,
194504
(
2019
).
55.
C. J.
Subich
,
K. G.
Lamb
, and
M.
Stastna
, “
Simulation of the Navier-Stokes equations in three dimensions with a spectral collocation method
,”
Int. J. Numer. Methods Fluids
73
,
103
129
(
2013
).
56.
A.
Alexakis
, “
On Holmboe's instability for smooth shear and density profiles
,”
Phys. Fluids
17
,
084103
(
2005
).
57.
J. R.
Carpenter
,
G. A.
Lawrence
, and
W. D.
Smyth
, “
Evolution and mixing of asymmetric Holmboe instabilities
,”
J. Fluid Mech.
582
,
103
132
(
2007
).
58.
A. K.
Kaminski
,
C. P.
Caulfield
, and
J. R.
Taylor
, “
Transient growth in strongly stratified shear layers
,”
J. Fluid Mech.
758
,
R4
(
2014
).
59.
A.
Guha
and
G. A.
Lawrence
, “
A wave interaction approach to studying non-modal homogeneous and stratified shear instabilities
,”
J. Fluid Mech.
755
,
336
364
(
2014
).
60.
C. D.
Winant
and
F. K.
Browand
, “
Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number
,”
J. Fluid Mech.
63
,
237
255
(
1974
).
61.
P. C.
Patnaik
,
F. S.
Sherman
, and
G. M.
Corcos
, “
A numerical simulation of Kelvin-Helmholtz waves of finite amplitude
,”
J. Fluid Mech.
73
,
215
240
(
1976
).
62.
W.
Dong
,
E. W.
Tedford
,
M.
Rahmani
, and
G. A.
Lawrence
, “
Sensitivity of vortex pairing and mixing to initial perturbations in stratified shear flows
,”
Phys. Rev. Fluids
4
,
063902
(
2019
).
63.
A.
Guha
and
M.
Rahmani
, “
Predicting vortex merging and ensuing turbulence characteristics in shear layers from initial conditions
,”
J. Fluid Mech.
878
,
R4
(
2019
).
64.
A.
Lefauve
,
J. L.
Partridge
, and
P. F.
Linden
, “
Regime transitions and energetics of sustained stratified shear flows
,”
J. Fluid Mech.
875
,
657
698
(
2019
).
65.
A.
Lefauve
,
J. L.
Partridge
, and
P. F.
Linden
, “
‘Research data supporting’ regime transitions and energetics of sustained stratified shear flows
,”
[Dataset]
(
2019
).
66.
T. M.
Dick
and
J.
Marsalek
,
Exchange Flow Between Lake Ontario and Hamilton Harbour
(
Environment Canada, Canada Center for Inland Waters
,
1973
).
67.
G. A.
Lawrence
,
R.
Pieters
,
L.
Zaremba
,
T.
Tedford
,
L.
Gu
,
S.
Greco
, and
P.
Hamblin
, “
Summer exchange between Hamilton Harbour and Lake Ontario
,”
Deep Sea Res. Part II
51
,
475
487
(
2004
).
68.
M.
Arita
and
G. H.
Jirka
, “
Two-layer model of saline wedge. I: Entrainment and interfacial friction
,”
J. Hydraul. Eng.
113
,
1229
1246
(
1987
).
You do not currently have access to this content.