The stability of a flow in porous media relates to the velocity rate of injecting and withdrawing natural gases inside porous storage. We, thus, aim to analyze the stability of flows in porous media to accelerate the energy transition process. This research examines a flow model of a tangential–velocity discontinuity with porosity and viscosity changes in a three-dimensional (3D) compressible medium because of a co-existence of different gases in storage. The fluids are assumed to move in a relative motion where the plane y = 0 is a tangential-velocity discontinuity surface. We obtain that the critical value of the Mach number to stabilize a tangential discontinuity surface of flows via porous media is smaller than the one of flows in a plane. The critical value of the Mach number M to stabilize a discontinuity surface of the 3D flow is different by a factor |cosθ| compared to the two-dimensional (2D) flow. Here, θ is the angle between velocity and wavenumber vectors. Our results also show that the flow model with viscosity and porosity effects is stable faster than those without these terms. Our analysis is done for both infinite and finite flows. The effect of solid walls along the flow direction could suppress the instability, i.e., the tangential–discontinuity surface is stabilized faster.

1.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
2004
), Vol. 2.
2.
S. W.
Thomson
and
F. R. S.
Kelvin Lord
, “
XLVI. Hydrokinetic solutions and observations
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
42
(
281
),
362
377
(
1871
).
3.
A. I.
Ershkovich
, “
Kelvin–Helmholtz instability in type-1 comet tails and associated phenomena
,”
Space Sci. Rev.
25
(
1
),
3
24
(
1980
).
4.
H.
Hasegawa
,
M.
Fujimoto
,
T. D.
Phan
,
H.
Rème
,
A.
Balogh
,
M. W.
Dunlop
,
C.
Hashimoto
, and
R.
TanDokoro
, “
Transport of solar wind into earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices
,”
Nature
430
(
7001
),
755
758
(
2004
).
5.
L. D.
Landau
, “
On the problem of turbulence
,”
Dokl. Akad. Nauk USSR
44
,
311
(
1944
).
6.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, Course of Theoretical Physics Vol.
6
, 2nd ed. (
Butterworth-Heinemann
,
1987
).
7.
I.-D.
Chang
and
P. E.
Russell
, “
Stability of a liquid layer adjacent to a high-speed gas stream
,”
Phys. Fluids
8
,
1018
1026
(
1965
).
8.
M.
Karimi
and
S. S.
Girimaji
, “
Suppression mechanism of Kelvin–Helmholtz instability in compressible fluid flows
,”
Phys. Rev. E
93
,
041102
(
2016
).
9.
W. C.
Wan
,
G.
Malamud
,
A.
Shimony
,
C. A.
Di Stefano
,
M. R.
Trantham
,
S. R.
Klein
,
D.
Shvarts
,
R. P.
Drake
, and
C. C.
Kuranz
, “
Observation of dual-mode, Kelvin–Helmholtz instability vortex merger in a compressible flow
,”
Phys. Plasmas
24
(
5
),
055705
(
2017
).
10.
B.
Romero
,
S. V.
Poroseva
,
P.
Vorobieff
, and
J. M.
Reisner
, “
Simulations of the shock-driven Kelvin–Helmholtz instability in inclined gas curtains
,”
Phys. Fluids
33
(
6
),
064103
(
2021
).
11.
T. T.
Le
and
T.
Koch
, “
Instability of a tangential discontinuity surface in a three-dimensional compressible medium
,”
Phys. Fluids
33
(
1
),
016106
(
2021
).
12.
S. I.
Syrovatskii
, “
Stability of tangential discontinuities in a compressible medium
,”
ZhETF
24
(
6
),
622
630
(
1953
).
13.
S. V.
Bezdenkov
and
O. P.
Pogutse
, “
Supersonic stabilization of a tangential shear in a thin atmosphere
,”
Pis'ma Zh. Eksp. Teor. Fiz.
37
,
317
319
(
1983
).
14.
R.
Krechetnikov
and
J. E.
Marsden
, “
Dissipation-induced instabilities in finite dimensions
,”
Rev. Mod. Phys.
79
,
519
553
(
2007
).
15.
L.
Jin
,
T. T.
Le
, and
Y.
Fukumoto
, “
Frictional effect on stability of discontinuity interface in tangential velocity of a shallow-water flow
,”
Phys. Lett. A
383
(
26
),
125839
(
2019
).
16.
T. T.
Le
, “
Kelvin–Helmholtz instability in a shallow-water flow with a finite width
,”
J. Math. Phys.
60
(
12
),
123101
(
2019
).
17.
T. T.
Le
, “
Effect of water depth on Kelvin–Helmholtz instability in a shallow water flow
,”
J. Math. Phys.
62
(
10
),
103101
(
2021
).
18.
T. T.
Le
and
Y.
Fukumoto
, “
Effect of depth discontinuity on interfacial stability of tangential-velocity discontinuity in shallow-water flow
,”
Phys. Lett. A
436
,
128073
(
2022
).
19.
Y.
Liu
,
Z. H.
Chen
,
H. H.
Zhang
, and
Z. Y.
Lin
, “
Physical effects of magnetic fields on the Kelvin–Helmholtz instability in a free shear layer
,”
Phys. Fluids
30
,
044102
(
2018
).
20.
J. A.
Fejer
, “
Hydromagnetic reflection and refraction at a fluid velocity discontinuity
,”
Phys. Fluids
6
(
4
),
508
512
(
1963
).
21.
D. J.
Acheson
, “
On over-reflexion
,”
J. Fluid Mech.
77
(
3
),
433
472
(
1976
).
22.
R. A.
Cairns
, “
The role of negative energy waves in some instabilities of parallel flows
,”
J. Fluid Mech.
92
(
1
),
1
14
(
1979
).
23.
N.
Luminari
, “
Modeling and simulation of flows over and through fibrous porous media
,” Ph.D. thesis (
Dynamique Des Fluides, Institut National Polytechnique de Toulouse
,
2018
).
24.
P. G.
Saffman
and
G. I.
Taylor
, “
The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid
,”
Proc. R. Soc. London, Ser. A
245
,
312
329
(
1958
).
25.
H.
Darcy
,
Les Fontaines Publiques de la Ville de Dijon
(
Dalmont
,
Paris
,
1856
).
26.
S.
Whitaker
, “
Flow in porous media I: A theoretical derivation of Darcy's law
,”
Transp. Porous Media
1
,
3
25
(
1986
).
27.
K.
Tsiberkin
, “
Porosity effect on the linear stability of flow overlying a porous medium
,”
Eur. Phys. J. E
43
,
34
(
2020
).
28.
Y. H.
Lee
,
J.
Azaiez
, and
I. D.
Gates
, “
Interfacial instabilities of immiscible non-Newtonian radial displacements in porous media
,”
Phys. Fluids
31
(
4
),
043103
(
2019
).
29.
Y. H.
Lee
and
I. D.
Gates
, “
Instability of parallel flow of two immiscible liquids in a pore and application to steam-assisted gravity drainage
,”
Can. J. Chem. Eng.
100
(
S1
),
S302
S311
(
2022
).
30.
R. C.
Sharma
,
H.
Singh
, and
K. P.
Thakur
, “
Kelvin–Helmholtz instability through porous medium of two superposed plasmas
,”
Acta Phys. Acad. Sci. Hung.
48
(
1
),
103
108
(
1980
).
31.
P. K.
Sharma
, “
Effect of magnetic field on the conducting fluids streaming in porous medium
,”
J. Phys.: Conf. Ser.
365
,
012041
(
2012
).
32.
A.
Bejan
,
P.
Vadasz
, and
D. G.
Kroger
,
Energy and the Environment
(
Springer
,
1999
).
33.
M. A.
Mujeebua
,
M. Z.
Abdullah
,
M. A.
Bakar
,
A. A.
Mohamad
, and
M. K.
Abdullah
, “
Applications of porous media combustion technology—A review
,”
Appl. Energy
86
(
9
),
1365
1375
(
2009
).
34.
K.
Vafai
,
Handbook of Porous Media
, 3rd ed. (
Taylor and Francis Group
,
Routledge
,
2015
).
35.
G. R. C.
Shekara
,
M. S.
Gayathri
, and
N.
Sujatha
, “
Effect of electric and magnetic fields on the growth rate of Kelvin–Helmholtz instability
,”
Spec. Top. Rev. Porous Media: An Int. J.
10
(
2
),
143
154
(
2019
).
36.
G. A.
Hoshoudy
and
M. K.
Awasthi
, “
Compressibility effects on the Kelvin–Helmholtz and Rayleigh–Taylor instabilities between two immiscible fluids flowing through a porous medium
,”
Eur. Phys. J. Plus
135
,
169
(
2020
).
37.
S.
Petrarolo
,
M.
Kobald
, and
S.
Schlechtriem
, “
Understanding Kelvin–Helmholtz instability in paraffin–based hybrid rocket fuels
,”
Exp. Fluids
59
,
62
(
2018
).
38.
S.
Endrikat
,
D.
Modesti
,
R.
García-Mayoral
,
N.
Hutchins
, and
D.
Chung
, “
Influence of riblet shapes on the occurrence of Kelvin–Helmholtz rollers
,”
J. Fluid Mech.
913
,
A37
(
2021
).
39.
T. T.
Le
and
T.
Koch
, “
Interface stability of compressible fluids in porous media
,”
Phys. Fluids
33
(
8
),
084102
(
2021
).
40.
D. S.
Henningson
,
A.
Lundbladh
, and
A. V.
Johansson
, “
A mechanism for bypass transition from localized disturbances in wall-bounded shear flows
,”
J. Fluid Mech.
250
,
169
207
(
1993
).
41.
A.
Atangana
, “
Principle of groundwater flow
,” in
Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology
(
Academic Press
,
2018
), Chap. 2.
42.
W.
Sobieski
and
A.
Trykozko
, “
Darcy's and Forschheimer's laws in practice. Part 1. The experiment
,”
Tech. Sci. A
17
(
4
),
321
335
(
2014
).
43.
H. H.
Bau
, “
Kelvin–Helmholtz instability for parallel flow in porous media: A linear theory
,”
Phys. Fluids
25
(
10
),
1719
1722
(
1982
).
44.
D.
Livescu
, “
Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids
,”
Phys. Fluids
16
(
1
),
118
127
(
2004
).
45.
R. A.
Gerwin
, “
Stability of the interface between two fluids in relative motion
,”
Rev. Mod. Phys.
40
,
652
658
(
1968
).
46.
R.
Asthana
,
M. K.
Awasthi
, and
G. S.
Agrawal
, “
Kelvin–Helmholtz instability of two viscous fluids in porous medium
,”
Int. J. Appl. Math. Mech.
8
,
1
(
2012
).
You do not currently have access to this content.