Owing to the multiscale nature and the consequent high-computational cost associated with simulations of flows over rough surfaces, effective models are being developed as a practical means of dealing with such flows. Existing effective models focus primarily on accurately predicting interface velocities using the slip length. Moreover, they are concerned mainly with flat interfaces and do not directly address the drag computation. In this work, we formulate the Transpiration-Resistance model in polar coordinates and address the challenge of computing drag components on rough surfaces. Like the slip length, we introduce two constitutive parameters called shear and pressure correction factors that encompass information about how the total drag is partitioned into viscous and pressure components. Computation of these non-empirical parameters does not necessitate solving additional microscale problems; they can be obtained from the same microscale problem used for the slip-length calculation. We demonstrate the effectiveness of the proposed parameters for the Couette flow over rough surfaces. Moreover, using the flow over a rough cylinder as an example, we present the accuracy of predicting interface velocity and drag components by comparing the effective model results with those obtained from geometry-resolved simulations. Numerical simulations presented in this paper prove that we can accurately capture both viscous and pressure drag over rough surfaces for flat- and circular-interface problems using the proposed constitutive parameters.

1.
D. W.
Bechert
and
M.
Bartenwerfer
, “
The viscous flow on surfaces with longitudinal ribs
,”
J. Fluid Mech.
206
,
105
129
(
1989
).
2.
R.
Truesdell
,
A.
Mammoli
,
P.
Vorobieff
,
F.
van Swol
, and
J. C.
Brinker
, “
Drag reduction on a patterned superhydrophobic surface
,”
Phys. Rev. Lett.
97
,
044504
(
2006
).
3.
E. R.
Smith
,
P. E.
Theodorakis
,
R. V.
Craster
, and
O. K.
Matar
, “
Moving contact lines: Linking molecular dynamics and continuum-scale modeling
,”
Langmuir
34
,
12501
12518
(
2018
).
4.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
5.
D. G.
Owen
,
T.
Schenkel
,
D. E. T.
Shepherd
, and
D. M.
Espin
, “
Assessment of surface roughness and blood rheology on local coronary haemodynamics: A multi-scale computational fluid dynamics study
,”
J. R. Soc. Interface
17
,
20200327
(
2020
).
6.
K.
Sarkar
and
A.
Prosperetti
, “
Effective boundary conditions for stokes flow over a rough surface
,”
J. Fluid Mech.
316
,
223
240
(
1996
).
7.
S. J.
Bolanos
and
B.
Vernescu
, “
Derivation of the Navier slip and slip length for viscous flows over a rough boundary
,”
Phys. Fluids
29
,
057103
(
2017
).
8.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on skin-friction drag
,”
Phys. Fluids
16
,
L55
L58
(
2004
).
9.
S. J.
Kim
,
H. N.
Kim
,
S. J.
Lee
, and
H. J.
Sung
, “
A lubricant-infused slip surface for drag reduction
,”
Phys. Fluids
32
,
091901
(
2020
).
10.
G. S.
Beavers
and
D. D.
Joseph
, “
Boundary conditions at a naturally permeable wall
,”
J. Fluid Mech.
30
,
197
207
(
1967
).
11.
U.
Lācis
and
S.
Bagheri
, “
A framework for computing effective boundary conditions at the interface between free fluid and a porous medium
,”
J. Fluid Mech.
812
,
866
889
(
2017
).
12.
Y.
Achdou
,
O.
Pironneau
, and
F.
Valentin
, “
Effective boundary conditions for laminar flows over periodic rough boundaries
,”
J. Comput. Phys.
147
,
187
218
(
1998
).
13.
A. D.
Stroock
,
S. K.
Dertinger
,
G. M.
Whitesides
, and
A.
Ajdari
, “
Patterning flows using grooved surfaces
,”
Anal. Chem.
74
,
5306
5312
(
2002
).
14.
M. Z.
Bazant
and
O. I.
Vinogradova
, “
Tensorial hydrodynamic slip
,”
J. Fluid Mech.
613
,
125
134
(
2008
).
15.
K.
Kamrin
,
M. Z.
Bazant
, and
H. A.
Stone
, “
Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor
,”
J. Fluid Mech.
658
,
409
437
(
2010
).
16.
K.
Kamrin
and
H. A.
Stone
, “
The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces
,”
Phys. Fluids
23
,
031701
(
2011
).
17.
A.
Bottaro
, “
Flow over natural or engineered surfaces: An adjoint homogenization perspective
,”
J. Fluid Mech.
877
,
P1
(
2019
).
18.
U.
Lācis
,
Y.
Sudhakar
,
S.
Pasche
, and
S.
Bagheri
, “
Transfer of mass and momentum at rough and porous surfaces
,”
J. Fluid Mech.
884
,
A21
(
2020
).
19.
Y.
Sudhakar
,
U.
Lācis
,
S.
Pasche
, and
S.
Bagheri
, “
Higher-order homogenized boundary conditions for flows over rough and porous surfaces
,”
Transp. Porous Media
136
,
1
42
(
2021
).
20.
S. M. H.
Khorasani
,
U.
Lācis
,
S.
Pasche
,
M. E.
Rosti
, and
S.
Bagheri
, “
Near-wall turbulence alteration with the transpiration-resistance model
,” arXiv:2105.09391 (
2021
).
21.
A.
Bottaro
and
S. B.
Naqvi
, “
Effective boundary conditions at a rough wall: A high-order homogenization approach
,”
Meccanica
55
,
1781
1800
(
2020
).
22.
G. A.
Zampogna
,
J.
Magnaudet
, and
A.
Bottaro
, “
Generalized slip condition over rough surfaces
,”
J. Fluid Mech.
858
,
407
436
(
2019
).
23.
G. A.
Zampogna
and
F.
Gallaire
, “
Effective stress jump across membranes
,”
J. Fluid Mech.
892
,
A9
(
2020
).
24.
P. G.
Ledda
,
E.
Boujo
,
S.
Camarri
,
F.
Gallaire
, and
G. A.
Zampogna
, “
Homogenization-based design of microstructured membranes: Wake flows past permeable shells
,”
J. Fluid Mech.
927
,
A31
(
2021
).
25.
Y.
Sudhakar
and
S.
Jain
, see https://bitbucket.org/ysudhakar/drag-effective-rough-surfaces/src/master/ for source codes (2022).
26.
F.
Hecht
, “
New development in freefem++
,”
J. Numer. Math.
20
,
251
266
(
2012
).
You do not currently have access to this content.