The flow in the square cavity with internal obstacles exists widely; thus, investigating the effect of the existence of the obstacles on the flow and the motion of the solid particles is important. To understand, predict, and control the motion of the solid particles, the motion of a neutrally buoyant circular particle in a lid-driven square cavity with an internal circular obstacle is studied with the lattice Boltzmann method, where the effects of the obstacle size, obstacle location, initial position of the circular particle, and Reynolds number are investigated. Under the effect of the obstacle, the flow and the motion of the particle are quite different. Especially, under some cases, no limit cycle is observed, and the particle is captured by the secondary vortex at the lower layer of the square cavity, which is insensitive to the initial position of the circular particle. The effect of the Reynolds number on the motion of the particle is significant, with the increase in the Reynolds number, and the motion of the particle is different obviously. At low Reynolds numbers, the motion of the particle is confined by the primary vortex, which moves along the limit cycle at the upper layer of the square cavity. With the increase in the Reynolds number, the effect of the inertia of the particle becomes stronger, and the particle moves from the primary vortex to the secondary vortex until it is captured by the secondary vortex. At relatively high Reynolds numbers, the primary vortex develops, and the particle is confined by the primary vortex again, forming another limit cycle.

1.
U.
Ghia
,
K.
Ghia
, and
C.
Shin
, “
High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
,
387
411
(
1982
).
2.
P.
Shankar
and
M.
Deshpande
, “
Fluid mechanics in the driven cavity
,”
Annu. Rev. Fluid Mech.
32
,
93
136
(
2000
).
3.
E.
Erturk
,
T.
Corke
, and
C.
Gokcol
, “
Numerical solutions of 2D steady incompressible driven cavity flow at high Reynolds numbers
,”
Int. J. Numer. Methods Fluids
48
,
747
774
(
2005
).
4.
E.
Erturk
and
C.
Gokcol
, “
Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers
,”
Int. J. Numer. Methods Fluids
50
,
421
436
(
2006
).
5.
E.
Erturk
, “
Discussions on driven cavity flow
,”
Int. J. Numer. Methods Fluids
60
,
275
294
(
2009
).
6.
K.
Shahab
and
M.
Joao
, “
A detailed study of lid-driven cavity flow at moderate Reynolds numbers using incompressible SPH
,”
Int. J. Numer. Methods Fluids
76
,
653
668
(
2014
).
7.
S.
Bhopalam
,
D.
Perumal
, and
A.
Yadav
, “
Computational appraisal of fluid flow behavior in two-sided oscillating lid-driven cavities
,”
Int. J. Mech. Sci.
196
,
106303
(
2021
).
8.
S.
Bhopalam
,
D.
Perumal
, and
A.
Yadav
, “
Computation of fluid flow in double sided cross-shaped lid-driven cavities using Lattice Boltzmann method
,”
Eur. J. Mech.-/Fluids
70
,
46
72
(
2018
).
9.
D.
Perumal
and
A.
Dass
, “
A Review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer
,”
Alexandria Eng. J.
54
,
955
971
(
2015
).
10.
T.
Stephen
and
E.
Nathan
, “
Sediment storage and evacuation in headwater valleys at the transition between debris-flow and fluvial processes
,”
Geology
35
,
1027
1030
(
2007
).
11.
H.
Zhong
,
J.
Zhou
,
Z.
Du
 et al., “
A laboratory experimental study on laser attenuations by dust/sand storms
,”
J. Aerosol Sci.
121
,
31
37
(
2018
).
12.
R.
Madankan
,
S.
Pouget
, and
P.
Singla
, “
Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion
,”
J. Comput. Phys.
271
,
39
59
(
2014
).
13.
G.
Yue
,
R.
Cai
, and
J.
Lu
, “
From a CFB reactor to a CFB boiler - The review of R&D progress of CFB coal combustion technology in China
,”
Powder Technol.
316
,
18
28
(
2017
).
14.
J.
James
,
M.
Rachel
, and
M.
Christian
, “
Ultrasound-propelled nanocups for drug delivery
,”
Small
11
,
5305
5314
(
2015
).
15.
W.
He
,
X.
Lv
, and
F.
Pan
, “
Novel preparation process of iron powders with semisteel by rotary cup atomizer
,”
Powder Technol.
356
,
1087
1096
(
2019
).
16.
S.
Tsorng
,
H.
Capart
,
J.
Lai
 et al., “
Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow
,”
Exp. Fluids
40
,
314
328
(
2006
).
17.
P.
Kosinski
,
A.
Kosinska
, and
A.
Hoffmann
, “
Simulation of solid particles behavior in a driven cavity flow
,”
Powder Technol.
191
,
327
339
(
2009
).
18.
N.
Sidika
and
A.
Safdari
, “
Numerical prediction of dynamics of solid particle in lid-driven cavity flow
,”
AIP Conf. Proc.
1440
,
1012
1017
(
2012
).
19.
R.
Francesco
and
C.
Hendrik
, “
Particle-boundary interaction in a shear-driven cavity flow
,”
Theor. Comput. Fluid Dyn.
31
,
427
445
(
2017
).
20.
J.
Hu
, “
Motion of a neutrally buoyant elliptical particle in a lid-driven square cavity
,”
Eur. J. Mech. - B/Fluids
85
,
124
133
(
2021
).
21.
T.
Huang
and
H.
Lim
, “
Simulation of lid-driven cavity flow with internal circular obstacles
,”
Appl. Sci.
10
,
4583
(
2020
).
22.
R.
Haq
,
F.
Soomro
,
X.
Wang
 et al., “
Partially heated lid-driven flow in a hexagonal cavity with inner circular obstacle via FEM
,”
Int. Commun. Heat Mass Transfer
117
,
104732
(
2020
).
23.
A.
Ladd
and
R.
Verberg
, “
Lattice-Boltzmann simulations of particle-fluid suspensions
,”
J. Stat. Phys.
104
,
1191
1251
(
2001
).
24.
U.
Lantermann
and
D.
Hanel
, “
Particle Monte Carlo and lattice-Boltzmann methods for simulations of gas-particle flows
,”
Comput. Fluids
36
,
407
422
(
2007
).
25.
A.
Safdari
and
K.
Kim
, “
Lattice Boltzmann simulation of solid particles behavior in a three-dimensional lid-driven cavity flow
,”
Computers Math. Appl.
68
,
606
621
(
2014
).
26.
A.
Safdari
and
K.
Kim
, “
Lattice Boltzmann simulation of the three-dimensional motions of particles with various density ratios in lid-driven cavity flow
,”
Appl. Math. Comput.
265
,
826
843
(
2015
).
27.
W.
Kevin
,
L.
Taehun
, and
F.
Jeffrey
, “
Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid-gas-particle systems
,”
J. Comput. Phys.
283
,
453
477
(
2015
).
28.
L.
Wang
,
C.
Peng
, and
Z.
Guo
, “
Lattice Boltzmann simulation of particle-laden turbulent channel flow
,”
Comput. Fluids
124
,
226
236
(
2016
).
29.
M.
Sommerfeld
and
Z.
Qadir
, “
Fluid dynamic forces acting on irregular shaped particles: Simulations by the Lattice-Boltzmann method
,”
Int. J. Multiphase Flow
101
,
212
222
(
2018
).
30.
J.
Hu
and
Z.
Guo
, “
Effect of interaction between a particle cluster and a single particle on particle motion and distribution during sedimentation: A numerical study
,”
Phys. Fluids
31
,
033301
(
2019
).
31.
J.
Hu
, “
Motion of a neutrally buoyant circular particle in a clockwise double-lid-driven square cavity
,”
Phys. Fluids
32
,
113304
(
2020
).
32.
J.
Hu
, “
Dynamics of a neutrally buoyant circular particle moving in a parallel double-lid-driven square cavity
,”
Int. J. Mod. Phys. C
32
,
2150067
(
2021
).
33.
Y.
Qian
,
D.
Humieres
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equations
,”
Europhys. Lett.
17
,
479
484
(
1992
).
34.
B.
Wen
,
C.
Zhang
,
Y.
Tu
 et al., “
Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations
,”
J. Comput. Phys.
266
,
161
170
(
2014
).
35.
D.
Wan
and
S.
Turek
, “
Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method
,”
Int. J. Numer. Methods Fluids
51
,
531
566
(
2006
).
36.
S.
Tao
,
H.
Zhang
,
Z.
Guo
 et al., “
Numerical investigation of dilute aerosol particle transport and deposition in oscillating multi-cylinder obstructions
,”
Adv. Powder Technol.
29
,
2003
2018
(
2018
).
37.
S.
Tao
,
Q.
He
,
B.
Chen
 et al., “
A direct force model for Galilean invariant lattice Boltzmann simulation of fluid-particle flows
,”
Int. J. Mod. Phys. C
29
,
1850021
(
2018
).
38.
A.
Kouhestani
,
M.
Rahnama
,
S.
Jafari
 et al., “
Particle flow simulation in a channel with symmetric protuberances using combination of lattice Boltzmann and smoothed profile methods
,”
Sci. Iran., Trans. B
24
,
1940
1949
(
2017
).
39.
J.
Liu
,
C.
Huang
, and
Z.
Chai
, “
A diffuse-interface lattice Boltzmann method for fluid–particle interaction problems
,”
Comput. Fluids
233
,
105240
(
2022
).
40.
J.
Hu
,
S.
Tao
, and
Z.
Guo
, “
An efficient unified iterative scheme for moving boundaries in lattice Boltzmann method
,”
Comput. Fluids
144
,
34
43
(
2017
).
41.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method
,”
Chin. Phys.
11
,
366
374
(
2002
).
42.
J.
Wu
and
C.
Shu
, “
Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme
,”
Commun. Comput. Phys.
7
,
793
812
(
2010
).
You do not currently have access to this content.