This study investigates the possibility of solving film problems using the phase-field lattice Boltzmann method (LBM). The mesoscopic nature of fluid interface makes the lattice Boltzmann method (LBM) a suitable tool to model two-phase systems. Experimental and theoretical observations for a film spreading on an inclined plane have been reproduced using LBM, justifying the use of LBM in film problems. We present a detailed analysis of the effect of the aspect ratio (the ratio of the film thickness far away from the contact point to the characteristic length), viscosity ratio, and surface wettability gradient. The study of the effect of the aspect ratio confirms that the dimensionless height of the tip of the ridge approaches unity exponentially as we move toward the thick film where lubrication approximation no longer holds. The ridge completely vanishes at a critical value of the aspect ratio (εc). εc is found to be independent of the advancing contact angle, and increasing the aspect ratio beyond εc results in fluid protrusion ahead of the contact point. The film is more prone to instability in a more viscous surrounding where free-surface assumption is not valid. Furthermore, the study of the effect of the chemically induced wettability gradient on the solid substrate reveals that the contact point velocity and the interfacial profile depend on the local surface wettability.

1.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
(
3
),
931
(
1997
).
2.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
(
3
),
1131
(
2009
).
3.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
292
(
2013
).
4.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
(
2
),
739
(
2009
).
5.
L.
Hocking
, “
Spreading and instability of a viscous fluid sheet
,”
J. Fluid Mech.
211
,
373
392
(
1990
).
6.
L. M.
Hocking
and
M. J.
Miksis
, “
Stability of a ridge of fluid
,”
J. Fluid Mech.
247
,
157
177
(
1993
).
7.
S.
Troian
,
E.
Herbolzheimer
,
S.
Safran
, and
J.
Joanny
, “
Fingering instabilities of driven spreading films
,”
Europhys. Lett.
10
(
1
),
25
(
1989
).
8.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
(
1
),
85
101
(
1971
).
9.
P. G.
López
,
S. G.
Bankoff
, and
M. J.
Miksis
, “
Non-isothermal spreading of a thin liquid film on an inclined plane
,”
J. Fluid Mech.
324
,
261
286
(
1996
).
10.
A. L.
Bertozzi
and
M. P.
Brenner
, “
Linear stability and transient growth in driven contact lines
,”
Phys. Fluids
9
(
3
),
530
539
(
1997
).
11.
X.
Fanton
,
A.
Cazabat
, and
D.
Quéré
, “
Thickness and shape of films driven by a Marangoni flow
,”
Langmuir
12
(
24
),
5875
5880
(
1996
).
12.
C.-Y.
Yan
,
K.-X.
Hu
, and
Q.-S.
Chen
, “
Thermocapillary instabilities of liquid layers on an inclined plane
,”
Phys. Fluids
30
(
8
),
082101
(
2018
).
13.
G.
Karapetsas
,
K. C.
Sahu
,
K.
Sefiane
, and
O. K.
Matar
, “
Thermocapillary-driven motion of a sessile drop: Effect of non-monotonic dependence of surface tension on temperature
,”
Langmuir
30
(
15
),
4310
4321
(
2014
).
14.
S.
Rafaï
,
D.
Sarker
,
V.
Bergeron
,
J.
Meunier
, and
D.
Bonn
, “
Superspreading: Aqueous surfactant drops spreading on hydrophobic surfaces
,”
Langmuir
18
(
26
),
10486
10488
(
2002
).
15.
U.
Ranganathan
,
G.
Chattopadhyay
, and
N.
Tiwari
, “
Evolution of a thin film down an incline: A new perspective
,”
Phys. Fluids
32
(
1
),
013603
(
2020
).
16.
C.
Ma
and
J.
Liu
, “
Thin-film evolution and fingering instability of self-rewetting films flowing down an inclined plane
,”
Phys. Fluids
33
(
2
),
022101
(
2021
).
17.
T. C.
Kumawat
and
N.
Tiwari
, “
Flow and stability of a gravity-driven thin film over a locally heated porous wall
,”
Phys. Fluids
32
(
9
),
092106
(
2020
).
18.
T. C.
Kumawat
and
N.
Tiwari
, “
Hydrodynamic stability of thermoviscous liquid film inside a rotating horizontal cylinder: Heating and cooling effects
,”
Phys. Fluids
30
(
3
),
032103
(
2018
).
19.
Z.
Yu
, “
Thermocapillary instability of self-rewetting films on vertical fibers
,”
Phys. Fluids
30
(
8
),
082104
(
2018
).
20.
S.
Khanum
and
N.
Tiwari
, “
Gravity-driven thermoviscous liquid film down a heated or cooled vertical cylinder
,”
Phys. Rev. Fluids
5
(
9
),
094005
(
2020
).
21.
D.
Takagi
and
H. E.
Huppert
, “
Flow and instability of thin films on a cylinder and sphere
,”
J. Fluid Mech.
647
,
221
238
(
2010
).
22.
S.
Kalliadasis
,
C.
Bielarz
, and
G.
Homsy
, “
Steady free-surface thin film flows over topography
,”
Phys. Fluids
12
(
8
),
1889
1898
(
2000
).
23.
S.
Kalliadasis
and
G.
Homsy
, “
Stability of free-surface thin-film flows over topography
,”
J. Fluid Mech.
448
,
387
410
(
2001
).
24.
N.
Tiwari
and
J. M.
Davis
, “
Stabilization of thin liquid films flowing over locally heated surfaces via substrate topography
,”
Phys. Fluids
22
(
4
),
042106
(
2010
).
25.
W.
Liu
and
T. P.
Witelski
, “
Steady states of thin film droplets on chemically heterogeneous substrates
,”
IMA J. Appl. Math.
85
(
6
),
980
1020
(
2020
).
26.
A. K.
Gunstensen
,
D. H.
Rothman
,
S.
Zaleski
, and
G.
Zanetti
, “
Lattice Boltzmann model of immiscible fluids
,”
Phys. Rev. A
43
(
8
),
4320
(
1991
).
27.
D. H.
Rothman
and
J. M.
Keller
, “
Immiscible cellular-automaton fluids
,”
J. Stat. Phys.
52
(
3
),
1119
1127
(
1988
).
28.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
(
3
),
1815
(
1993
).
29.
X.
Shan
and
H.
Chen
, “
Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation
,”
Phys. Rev. E
49
(
4
),
2941
(
1994
).
30.
M. R.
Swift
,
E.
Orlandini
,
W.
Osborn
, and
J.
Yeomans
, “
Lattice Boltzmann simulations of liquid-gas and binary fluid systems
,”
Phys. Rev. E
54
(
5
),
5041
(
1996
).
31.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
(
2
),
642
663
(
1999
).
32.
X.
He
and
G. D.
Doolen
, “
Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows
,”
J. Stat. Phys.
107
(
1
),
309
328
(
2002
).
33.
R.
Verberg
,
J. M.
Yeomans
, and
A. C.
Balazs
, “
Modeling the flow of fluid/particle mixtures in microchannels: Encapsulating nanoparticles within monodisperse droplets
,”
J. Chem. Phys.
123
(
22
),
224706
(
2005
).
34.
H.
Safari
,
M. H.
Rahimian
, and
M.
Krafczyk
, “
Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method
,”
Phys. Rev. E
90
(
3
),
033305
(
2014
).
35.
P.
Randive
,
A.
Dalal
,
K. C.
Sahu
,
G.
Biswas
, and
P. P.
Mukherjee
, “
Wettability effects on contact line dynamics of droplet motion in an inclined channel
,”
Phys. Rev. E
91
(
5
),
053006
(
2015
).
36.
W.
Feng
and
B.
Bhushan
, “
Multistep wettability gradient in bioinspired triangular patterns for water condensation and transport
,”
J. Colloid Interface Sci.
560
,
866
873
(
2020
).
37.
H.
Zhao
and
D.
Beysens
, “
From droplet growth to film growth on a heterogeneous surface: Condensation associated with a wettability gradient
,”
Langmuir
11
(
2
),
627
634
(
1995
).
38.
A.
Tokunaga
and
T.
Tsuruta
, “
Enhancement of condensation heat transfer on a microstructured surface with wettability gradient
,”
Int. J. Heat Mass Transfer
156
,
119839
(
2020
).
39.
C.
Liu
,
J.
Sun
,
J.
Li
,
C.
Xiang
,
L.
Che
,
Z.
Wang
, and
X.
Zhou
, “
Long-range spontaneous droplet self-propulsion on wettability gradient surfaces
,”
Sci. Rep.
7
(
1
),
1
8
(
2017
).
40.
M.
Ahmadlouydarab
and
J. J.
Feng
, “
Motion and coalescence of sessile drops driven by substrate wetting gradient and external flow
,”
J. Fluid Mech.
746
,
214
235
(
2014
).
41.
G.
Zhang
,
X.
Zhang
,
M.
Li
, and
Z.
Su
, “
A surface with superoleophilic-to-superoleophobic wettability gradient
,”
ACS Appl. Mater. Interfaces
6
(
3
),
1729
1733
(
2014
).
42.
H.
Kusumaatmaja
and
J.
Yeomans
, “
Controlling drop size and polydispersity using chemically patterned surfaces
,”
Langmuir
23
(
2
),
956
959
(
2007
).
43.
I. U.
Chowdhury
,
P.
Sinha Mahapatra
, and
A. K.
Sen
, “
Self-driven droplet transport: Effect of wettability gradient and confinement
,”
Phys. Fluids
31
(
4
),
042111
(
2019
).
44.
M. K.
Chaudhury
and
G. M.
Whitesides
, “
How to make water run uphill
,”
Science
256
(
5063
),
1539
1541
(
1992
).
45.
K. A.
Raman
,
R. K.
Jaiman
,
T.-S.
Lee
, and
H.-T.
Low
, “
Lattice Boltzmann simulations of droplet impact onto surfaces with varying wettabilities
,”
Int. J. Heat Mass Transfer
95
,
336
354
(
2016
).
46.
W.
Li
,
J.
Lu
,
G.
Tryggvason
, and
Y.
Zhang
, “
Numerical study of droplet motion on discontinuous wetting gradient surface with rough strip
,”
Phys. Fluids
33
(
1
),
012111
(
2021
).
47.
K. A.
Raman
, “
Dynamics of simultaneously impinging drops on a dry surface: Role of inhomogeneous wettability and impact shape
,”
J. Colloid Interface Sci.
516
,
232
247
(
2018
).
48.
S.
Mukherjee
and
J.
Abraham
, “
Crown behavior in drop impact on wet walls
,”
Phys. Fluids
19
(
5
),
052103
(
2007
).
49.
K. A.
Raman
,
R. K.
Jaiman
,
T.-S.
Lee
, and
H.-T.
Low
, “
Dynamics of simultaneously impinging drops on a dry surface: Role of impact velocity and air inertia
,”
J. Colloid Interface Sci.
486
,
265
276
(
2017
).
50.
S.
Zitz
,
A.
Scagliarini
,
S.
Maddu
,
A. A.
Darhuber
, and
J.
Harting
, “
Lattice Boltzmann method for thin-liquid-film hydrodynamics
,”
Phys. Rev. E
100
(
3
),
033313
(
2019
).
51.
Y.
Shi
,
G.
Chen
,
Q.
Wang
, and
Q.
Chen
, “
Simulation on falling film absorption based on lattice Boltzmann method at moderate Reynolds number
,”
Int. J. Heat Mass Transfer
128
,
991
998
(
2019
).
52.
Q.-Z.
Li
,
Z.-L.
Lu
,
D.
Zhou
,
X.-D.
Niu
,
T.-Q.
Guo
, and
B.-C.
Du
, “
A high-order phase-field based lattice Boltzmann model for simulating complex multiphase flows with large density ratios
,”
Int. J. Numer. Methods Fluids
93
(
2
),
293
313
(
2021
).
53.
C.
Zhang
,
Z.
Guo
, and
H.
Liang
, “
High-order lattice-Boltzmann model for the Cahn-Hilliard equation
,”
Phys. Rev. E
99
(
4
),
043310
(
2019
).
54.
T.
Lee
and
C.-L.
Lin
, “
A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio
,”
J. Comput. Phys.
206
(
1
),
16
47
(
2005
).
55.
H.
Ding
and
P. D.
Spelt
, “
Wetting condition in diffuse interface simulations of contact line motion
,”
Phys. Rev. E
75
(
4
),
046708
(
2007
).
56.
Q.
Lou
,
Z.
Guo
, and
B.
Shi
, “
Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation
,”
Phys. Rev. E
87
(
6
),
063301
(
2013
).
57.
N.
Tiwari
,
Z.
Mester
, and
J. M.
Davis
, “
Stability and transient dynamics of thin liquid films flowing over locally heated surfaces
,”
Phys. Rev. E
76
(
5
),
056306
(
2007
).
58.
S.
Hou
,
X.
Shan
,
Q.
Zou
,
G. D.
Doolen
, and
W. E.
Soll
, “
Evaluation of two lattice Boltzmann models for multiphase flows
,”
J. Comput. Phys.
138
(
2
),
695
713
(
1997
).
59.
J. M.
Jerrett
and
J. R.
de Bruyn
, “
Fingering instability of a gravitationally driven contact line
,”
Phys. Fluids A
4
(
2
),
234
242
(
1992
).
60.
M.
Johnson
,
R.
Schluter
,
M. J.
Miksis
, and
S.
Bankoff
, “
Experimental study of rivulet formation on an inclined plate by fluorescent imaging
,”
J. Fluid Mech.
394
,
339
354
(
1999
).
61.
A. L.
Bertozzi
,
A.
Münch
,
X.
Fanton
, and
A. M.
Cazabat
, “
Contact line stability and ‘undercompressive shocks’ in driven thin film flow
,”
Phys. Rev. Lett.
81
(
23
),
5169
(
1998
).
62.
A.
Frank
and
O.
Kabov
, “
Thermocapillary structure formation in a falling film: Experiment and calculations
,”
Phys. Fluids
18
(
3
),
032107
(
2006
).
63.
J.
Huang
,
C.
Shu
, and
Y.
Chew
, “
Mobility-dependent bifurcations in capillarity-driven two-phase fluid systems by using a lattice Boltzmann phase-field model
,”
Int. J. Numer. Methods Fluids
60
(
2
),
203
225
(
2009
).
64.
J. H.
Snoeijer
, “
Free-surface flows with large slopes: Beyond lubrication theory
,”
Phys. Fluids
18
(
2
),
021701
(
2006
).
65.
A.
Mazouchi
and
G.
Homsy
, “
Free surface stokes flow over topography
,”
Phys. Fluids
13
(
10
),
2751
2761
(
2001
).
66.
S.
Reznik
and
A.
Yarin
, “
Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall
,”
Phys. Fluids
14
(
1
),
118
132
(
2002
).
67.
Q.
Kang
,
D.
Zhang
, and
S.
Chen
, “
Displacement of a two-dimensional immiscible droplet in a channel
,”
Phys. Fluids
14
(
9
),
3203
3214
(
2002
).
68.
M. K.
Chaudhury
,
A.
Chakrabarti
, and
S.
Daniel
, “
Generation of motion of drops with interfacial contact
,”
Langmuir
31
(
34
),
9266
9281
(
2015
).
69.
M.
Hatipogullari
,
C.
Wylock
,
M.
Pradas
,
S.
Kalliadasis
, and
P.
Colinet
, “
Contact angle hysteresis in a microchannel: Statics
,”
Phys. Rev. Fluids
4
(
4
),
044008
(
2019
).
70.
D.
Simmons
and
A.
Chauhan
, “
Influence of physical and chemical heterogeneity shape on thin film rupture
,”
J. Colloid Interface Sci.
295
(
2
),
472
481
(
2006
).
You do not currently have access to this content.