Icing and stalling on the surfaces of aircraft wings endanger flight safety. The object of this research is a nanosecond pulsed dielectric-barrier-discharge plasma actuation unit with a distributed layout, and the aerodynamic performance of aircraft wing surfaces under icing and stalling conditions is improved by changing the plasma actuation electrical parameters. Actuated under low voltage and frequency, the unit acts as a sensor to judge icing according to the change in electrical parameters. Actuated under high voltage and frequency, the discharge is severe and generates a large amount of heat, giving rise to an anti-icing unit; anti-icing is carried out through distributed-layout plasma actuation, forming modulated ice with evenly spaced distribution, which acts as a vortex generator and lessens the deterioration of aircraft aerodynamic performance under icing conditions. Actuating under high voltage and low frequency enables flow control, delays stalling, and increases lift. The different plasma-actuation functions are realized by connecting multiple units, which offers improved aircraft survivability in complex weather conditions.

1.
D.
Greenblatt
and
I. J.
Wygnanski
, “
The control of flow separation by periodic excitation
,”
Prog. Aerosp. Sci.
36
(
7
),
487
545
(
2000
).
2.
Y.
Cao
,
Z.
Wu
,
Y.
Su
, and
Z.
Xu
, “
Aircraft flight characteristics in icing conditions
,”
Prog. Aerosp. Sci.
74
,
62
80
(
2015
).
3.
S.
Ghaemi
, “
Passive and active control of turbulent flows
,”
Phys. Fluids
32
(
8
),
080401
(
2020
).
4.
A.
Uzun
and
M. R.
Malik
, “
Large-eddy simulation of flow over a wall-mounted hump with separation and reattachment
,”
AIAA J.
56
(
2
),
715
730
(
2018
).
5.
H.
Yu
,
Z.
Xu
,
W.
Chen
,
H.
Li
, and
D.
Gao
, “
Attenuation of vortex street by suction through structured porous surface
,”
Phys. Fluids
33
(
12
),
125101
(
2021
).
6.
A. P.
Broeren
,
M.
Potapczuk
,
J.
Riley
,
P.
Villedieu
,
F.
Moens
, and
M.
Bragg
, “
Swept-wing ice accretion characterization and aerodynamics
,” in
5th AIAA Atmospheric and Space Environments Conference, San Diego, CA, 24–27 June 2013
(
AIAA
,
2013
), p.
2824
.
7.
J. R.
Roth
and
X.
Dai
, “
Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 9–12 January 2006
(
AIAA
,
2006
), p.
1203
.
8.
H.
Meng
,
G.
Chen
,
W.
Chen
,
H.
Li
, and
D.
Gao
, “
Characteristics of the forced flow past a square cylinder with steady suctions at the leading-edge corners
,”
Phys. Fluids
34
(
2
),
025119
(
2022
).
9.
R. F.
Huang
,
C. M.
Hsu
, and
Y. T.
Chen
, “
Modulating flow and aerodynamic characteristics of a square cylinder in crossflow using a rear jet injection
,”
Phys. Fluids
29
(
1
),
015103
(
2017
).
10.
M.
Sato
,
T.
Nonomura
,
K.
Okada
,
K.
Asada
,
H.
Aono
,
A.
Yakeno
,
Y.
Abe
, and
K.
Fujii
, “
Mechanisms for laminar separated-flow control using dielectric-barrier-discharge plasma actuator at low Reynolds number
,”
Phys. Fluids
27
(
11
),
117101
(
2015
).
11.
L.
Xie
,
H.
Liang
,
G.
Zhao
,
B.
Wei
,
H.
Yang
, and
W.
Hua
, “
Characteristics of pulsed surface arc discharge actuator and its verification of flow control over a Delta wing
,”
Sens. Actuator, A
297
,
111550
(
2019
).
12.
G.
Zhao
,
Y.
Li
,
H.
Liang
,
M.
Han
, and
Y.
Wu
, “
Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators
,”
Chin. J. Aeronaut.
28
(
2
),
368
376
(
2015
).
13.
Z.
Niu
,
J.
Liu
,
H.
Liang
,
L.
Xie
, and
Z.
Su
, “
Flying wing flow separation control by microsecond pulsed dielectric barrier discharge at high Reynolds number
,”
AIP Adv.
9
(
12
),
125120
(
2019
).
14.
Z.
Su
,
J.
Li
,
H.
Liang
,
B.
Zheng
,
B.
Wei
,
J.
Chen
, and
L.
Xie
, “
UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
,”
Chin. Phys. B
27
(
10
),
105205
(
2018
).
15.
X.
Zhang
,
H.
Li
,
Y.
Huang
,
K.
Tang
, and
W.
Wang
, “
Leading-edge flow separation control over an airfoil using a symmetrical dielectric barrier discharge plasma actuator
,”
Chin. J. Aeronaut.
32
(
5
),
1190
1203
(
2019
).
16.
C.
Durasiewicz
,
A.
Singh
, and
J. C.
Little
, “
A comparative flow physics study of Ns-DBD vs Ac-DBD plasma actuators for transient separation control on a NACA 0012 airfoil
,” AIAA Paper No. 2018-1061,
2018
.
17.
A. A.
Sidorenko
,
A. D.
Budovskiy
,
A. A.
Maslov
,
B. V.
Postnikov
,
B. Y.
Zanin
,
I. D.
Zverkov
, and
V. V.
Kozlov
, “
Plasma control of vortex flow on a delta wing at high angles of attack
,”
Exp. Fluids
54
(
8
),
1585
(
2013
).
18.
S.
Nourgostar
and
J. R.
Roth
, “
Schlieren imaging of the aerodynamic flow field induced by a paraelectric electrohydrodynamic (EHD) plasma actuator
,”
IEEE Trans. Plasma Sci.
36
(
4
),
1320
1321
(
2008
).
19.
H.
Zong
,
Y.
Wu
,
H.
Song
,
M.
Jia
,
H.
Liang
,
Y.
Li
, and
Z.
Zhang
, “
Investigation of the performance characteristics of a plasma synthetic jet actuator based on a quantitative Schlieren method
,”
Meas. Sci. Technol.
27
(
5
),
055301
(
2016
).
20.
J.
Little
,
A.
Singh
,
T.
Ashcraft
, and
C.
Durasiewicz
, “
Post-stall flow control using nanosecond pulse driven dielectric barrier discharge plasma actuators
,”
Plasma Sources Sci. Technol.
28
(
1
),
014002
(
2019
).
21.
J.
Cai
,
Y.
Tian
,
X.
Meng
,
X.
Han
,
D.
Zhang
, and
H.
Hu
, “
An experimental study of icing control using DBD plasma actuator
,”
Exp. Fluids
58
(
8
),
102
(
2017
).
22.
H.
Hu
,
X.
Meng
,
J.
Cai
,
W.
Zhou
,
Y.
Liu
, and
H.
Hui
, “
Optimization of dielectric barrier discharge plasma actuators for icing control
,”
J. Aircr.
57
(
2
),
383
387
(
2020
).
23.
B.
Wei
,
Y.
Wu
,
H.
Liang
,
J.
Chen
,
G.
Zhao
,
M.
Tian
, and
H.
Xu
, “
Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer
,”
Phys. Fluids
31
(
9
),
091701
(
2019
).
24.
X.
Meng
,
H.
Hu
,
C.
Li
,
A. A.
Abbasi
,
J.
Cai
, and
H.
Hu
, “
Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing
,”
Phys. Fluids
31
(
3
),
037103
(
2019
).
25.
F.
Rodrigues
,
M.
Abdollahzadeh
,
J. C.
Pascoa
, and
P. J.
Oliveira
, “
An experimental study on segmented-encapsulated electrode dielectric-barrier-discharge plasma actuator for mapping ice formation on a surface: A conceptual analysis
,”
J. Heat Transfer
143
(
1
),
011701
(
2021
).
26.
M.
Abdollahzadeh
,
F.
Rodrigues
, and
J. C.
Pascoa
, “
Simultaneous ice detection and removal based on dielectric barrier discharge actuators
,”
Sens. Actuator, A
315
,
112361
(
2020
).
27.
B.
Wei
,
Y.
Wu
,
H.
Liang
,
Y.
Zhu
,
J.
Chen
,
G.
Zhao
,
H.
Song
,
M.
Jia
, and
H.
Xu
, “
SDBD based plasma anti-icing: A stream-wise plasma heat knife configuration and criteria energy analysis
,”
Int. J. Heat Mass Transfer
138
,
163
172
(
2019
).
28.
Y.
Wu
,
B.
Wei
,
H.
Liang
,
L.
Xie
,
Z.
Li
, and
Y.
Li
, “
Flight safety oriented ice shape modulation using distributed plasma actuator units
,”
Chin. J. Aeronaut.
34
(
10
),
1
5
(
2021
).
You do not currently have access to this content.