The oblique detonation induced by a two-dimensional semi-infinite wedge is simulated numerically with the Navier–Stokes equations and a detailed H2/air reaction model based on the open-source program-Adaptive Mesh Refinement in Object-oriented C++. A spatially seventh-order-accurate weighted essentially non-oscillatory scheme is adopted for the convective flux discretization. The formation and evolution of the oblique detonation induced by wedges at different angles and inflow conditions are investigated, and a prediction model for the oblique detonation flow field is proposed. The results show that the formation of the oblique detonation flow field can be divided into two processes. The first process is similar to the oblique shock flow field with unreactive inflow. When the inflow passes through the wedge, the oblique shock wave starts to form at the tip, followed by the unstable curved shock surface and triple point. In this process, a thin reaction layer is formed on the wedge front, but the thickness of the reaction layer is almost constant. The second process is similar to the process of deflagration to detonation. As the reaction rate increases, the deflagration front is fixed on the wedge, the reaction layer thickens, and the deflagration front gradually approaches the oblique shock wave. When the deflagration front is coupled with the oblique shock wave, the oblique detonation is formed. Moreover, a theoretical prediction model for the triple point location is proposed. Compared with the numerical simulation results, the theoretical model prediction for the position of the transition point of the oblique shock wave–oblique detonation wave is relatively acceptable.

1.
R. A.
Gross
, “
Oblique detonation waves
,”
AIAA J.
1
(
5
),
1225
1227
(
1963
).
2.
D. T.
Pratt
,
J. W.
Humphrey
, and
D. E.
Glenn
, “
Morphology of standing oblique detonation waves
,”
J. Propul. Power
7
(
5
),
837
845
(
1991
).
3.
J. M.
Powers
, “
Oblique detonations: Theory and propulsion applications
,” in
Combustion in High-Speed Flows
, edited by
J.
Buckmaster
,
T. L.
Jackson
, and
A.
Kumar
(
Kluwer Academic
,
Norwell, MA
,
1994
), pp.
345
371
.
4.
C. I.
Morris
,
M. R.
Kamel
, and
R. K.
Hanson
, “
Shock-induced combustion in high-speed wedge flows
,”
Symp. (Int.) Combust.
27
(
2
),
2157
2164
(
1998
).
5.
D. S.
Stewart
and
A. R.
Kasimov
, “
State of detonation stability theory and its application to propulsion
,”
J. Propul. Power
22
(
6
),
1230
1244
(
2006
).
6.
J.
Urzay
, “
Supersonic combustion in air-breathing propulsion systems for hypersonic flight
,”
Annu. Rev. Fluid Mech.
50
(
1
),
593
627
(
2018
).
7.
J. M.
Powers
and
K. A.
Gonthier
, “
Reaction zone structure for strong, weak overdriven, and weak underdriven oblique detonations
,”
Phys. Fluids
4
(
9
),
2082
2089
(
1992
).
8.
J. M.
Powers
and
D. S.
Stewart
, “
Approximate solutions for oblique detonations in the hypersonic limit
,”
AIAA J.
30
(
3
),
726
736
(
1992
).
9.
G.
Emanuel
and
D.
Tuckness
, “
Steady, oblique, detonation waves
,”
Shock Waves
13
(
6
),
445
451
(
2004
).
10.
J.
Verreault
,
A. J.
Higgins
, and
R. A.
Stowe
, “
Formation and structure of steady oblique and conical detonation waves
,”
AIAA J.
50
(
8
),
1766
1772
(
2012
).
11.
D.
Martínez-Ruiz
,
C.
Huete
,
A. L.
Sánchez
, and
F. A.
Williams
, “
Theory of weakly exothermic oblique detonations
,”
AIAA J.
58
(
1
),
236
242
(
2020
).
12.
D.
Martinez-Ruiz
,
L.
Scotzniovsky
,
A. L.
Sanchez
, and
F. A.
Williams
, “
Wedge-induced oblique detonations with small heat release
,”, AIAA Paper No. AIAA 2021-0287,
2021
.
13.
C.
Li
,
K.
Kailasanath
, and
E. S.
Oran
, “
Detonation structures behind oblique shocks
,”
Phys. Fluids
6
(
4
),
1600
1611
(
1994
).
14.
V. V.
Vlasenko
and
V. A.
Sabel'Nikov
, “
Numerical simulation of inviscid flows with hydrogen combustion behind shock waves and in detonation waves
,”
Combust. Explos. Shock Waves
31
(
3
),
376
389
(
1995
).
15.
L. F. F.
Da Silva
and
B.
Deshaies
, “
Stabilization of an oblique detonation wave by a wedge: A parametric numerical study
,”
Combust. Flame
121
(
1–2
),
152
166
(
2000
).
16.
K.
Ghorbanian
and
J. D.
Sterling
, “
Influence of formation processes on oblique detonation wave stabilization
,”
J. Propul. Power
12
(
3
),
509
517
(
1996
).
17.
J. P.
Sislian
,
R.
Dudebout
,
J.
Schumacher
,
M.
Islam
, and
T.
Redford
, “
Incomplete mixing and off-design effects on shock-induced combustion ramjet performance
,”
J. Propul. Power
16
(
1
),
41
48
(
2000
).
18.
G.
Fusina
,
J. P.
Sislian
, and
B.
Parent
, “
Formation and stability of near Chapman-Jouguet standing oblique detonation waves
,”
AIAA J.
43
(
7
),
1591
1604
(
2005
).
19.
Y.
Zhang
,
J.
Gong
, and
T.
Wang
, “
Numerical study on initiation of oblique detonations in hydrogen–air mixtures with various equivalence ratios
,”
Aerosp. Sci. Technol.
49
,
130
134
(
2016
).
20.
J. H. S.
Lee
,
Detonation Phenomenon
(
Cambridge University Press
,
2008
), p.
400
.
21.
H.
Teng
,
H. D.
Ng
,
P.
Yang
, and
K.
Wang
, “
Near-field relaxation subsequent to the onset of oblique detonations with a two-step kinetic model
,”
Phys. Fluids
33
(
9
),
096106
(
2021
).
22.
P.
Yang
,
H. D.
Ng
, and
H.
Teng
, “
Unsteady dynamics of wedge-induced oblique detonations under periodic inflows
,”
Phys. Fluids
33
(
1
),
016107
(
2021
).
23.
Y.
Zhang
,
L.
Zhou
,
J.
Gong
,
H. D.
Ng
, and
H.
Teng
, “
Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model
,”
Phys. Fluids
30
(
10
),
106110
(
2018
).
24.
K.
Iwata
,
S.
Nakaya
, and
M.
Tsue
, “
Numerical investigation of the effects of nonuniform premixing on shock-induced combustion
,”
AIAA J.
54
(
5
),
1682
1692
(
2016
).
25.
K.
Iwata
,
S.
Nakaya
, and
M.
Tsue
, “
Wedge-stabilized oblique detonation in an inhomogeneous hydrogen–air mixture
,”
Proc. Combust. Inst.
36
(
2
),
2761
2769
(
2017
).
26.
Y.
Fang
,
Z.
Hu
,
H.
Teng
,
Z.
Jiang
, and
H. D.
Ng
, “
Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen–air mixtures
,”
Aerosp. Sci. Technol.
71
,
256
263
(
2017
).
27.
C. L.
Bachman
and
G. B.
Goodwin
, “
Ignition criteria and the effect of boundary layers on wedge-stabilized oblique detonation waves
,”
Combust. Flame
223
,
271
283
(
2021
).
28.
J. L.
Ziegler
,
R.
Deiterding
,
J. E.
Shepherd
, and
D. I.
Pullin
, “
An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry
,”
J. Comput. Phys.
230
(
20
),
7598
7630
(
2011
).
29.
R.
Deiterding
, “
A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains
,”
Comput. Struct.
87
(
11–12
),
769
783
(
2009
).
30.
M. J.
Berger
and
J.
Oliger
, “
Adaptive mesh refinement for hyperbolic partial differential equations
,”
J. Comput. Phys.
53
(
3
),
484
512
(
1984
).
31.
E. S.
Oran
and
J. P.
Boris
,
Numerical Simulation of Reactive Flow
, 2nd ed. (
Cambridge University Press
,
2001
).
32.
M. P.
Martín
,
E. M.
Taylor
,
M.
Wu
, and
V. G.
Weirs
, “
A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence
,”
J. Comput. Phys.
220
(
1
),
270
289
(
2006
).
33.
S.
Gottlieb
,
D. I.
Ketcheson
, and
C.-W.
Shu
, “
High order strong stability preserving time discretizations
,”
J. Sci. Comput.
38
(
3
),
251
289
(
2009
).
34.
P.
Kaps
and
P.
Rentrop
, “
Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations
,”
Numer. Math.
33
(
1
),
55
68
(
1979
).
35.
C. K.
Westbrook
, “
Chemical kinetics of hydrocarbon oxidation in gaseous detonations
,”
Combust. Flame
46
,
191
210
(
1982
).
36.
T.
Wang
,
Y.
Zhang
,
H.
Teng
,
Z.
Jiang
, and
H. D.
Ng
, “
Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture
,”
Phys. Fluids
27
(
9
),
096101
(
2015
).
37.
D. G.
Goodwin
,
R. L.
Speth
,
H. K.
Moffat
, and
B. W.
Weber
, “
Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, Version 2.4.0
,” (
2018
); available at https://www.cantera.org.
38.
C.
Viguier
,
L. F. F.
Da Silva
,
D.
Desbordes
, and
B.
Deshaies
, “
Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures
,”
Symp. (Int.) Combust.
26
(
2
),
3023
3031
(
1996
).
39.
Y.
Huang
,
Z.
Luan
,
Z.
Li
,
H.
Ji
, and
Y.
You
, “
Study on the flow characteristics in the non-detonation reaction zones of wedge-induced oblique detonation transitions
,”
Aerosp. Sci. Technol.
120
,
107282
(
2022
).
40.
H.
Teng
,
H. D.
Ng
, and
Z.
Jiang
, “
Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture
,”
Proc. Combust. Inst.
36
(
2
),
2735
2742
(
2017
).
You do not currently have access to this content.