In this study, an experimental investigation was conducted on the rising height and contact angle of fluid in an annular wick-type heat pipe. The annular wick-type heat pipe was characterized by a small gap between the wick structure and tube wall, which compensated for the pressure drop along the porous media and created additional capillary force. To describe and model the advantage of this gap, the rising of a wetting liquid in the gap between a vertical solid plate and a mesh (with a small angle between them) was experimentally measured and analyzed. An additional experiment was performed to investigate the effect of curvature on the capillary rise using tubes and meshes of varying radii. Resultantly, we confirmed that the linear combination of the contact angles of the solid plate and mesh could be applied to calculate the rising height from the Laplace–Young equation. Furthermore, the effect of curvature on the rising height of the liquid was negligible. These results were extended to the investigation of finding the optimal gap distance for the annular wick-type heat pipe by referring to previous studies. We observed that a gap distance of 1.27mm provided the largest permeability (K) over the effective pore radius (reff) value for a heat pipe with ethanol, which in turn resulted in the highest capillary limitation. For a sodium heat pipe, a gap distance of 0.84mm resulted in the highest capillary limitation.

1.
G. P.
Peterson
,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
(
Wiley
,
1994
).
2.
R. S.
Gaugler
, “Heat Transfer Device”, U.S. patent 2350348 (June 6,
1944
).
3.
G. M.
Grover
,
T. P.
Cotter
, and
G. F.
Erickson
, “
Structures of very high thermal conductance
,”
J. Appl. Phys.
35
(
6
),
1990
1991
(
1964
).
4.
K. N.
Shukla
,
Heat Pipe for Aerospace Applications—An Overview
(
PRERANA CGHS Ltd.
,
India
,
2015
), pp.
1
14
.
5.
N.
Phan
, “
Flat-evaporator-type loop heat pipe with hydrophilic polytetrafluoroethylene porous membranes
,”
Phys. Fluids
32
(
4
),
047108
(
2020
).
6.
X. W.
Wang
,
Z. P.
Wan
, and
Y.
Tang
, “
Thermodynamic and experimental study on heat transfer mechanism of miniature loop heat pipe with water-copper nanofluid
,”
Phys. Fluids
30
(
2
),
027102
(
2018
).
7.
Y. S.
Jeong
,
K. M.
Kim
,
I. G.
Kim
, and
I. C.
Bang
, “
Hybrid heat pipe based passive in-core cooling system for advanced nuclear power plant
,”
Appl. Therm. Eng.
90
,
609
618
(
2015
).
8.
M.
Mochizuki
,
R.
Singh
,
T.
Nguyen
, and
T.
Nguyen
, “
Heat pipe based passive emergency core cooling system for safe shutdown of nuclear power reactor
,”
Appl. Therm. Eng.
73
(
1
),
699
706
(
2014
).
9.
E.
Mathioulakis
and
V.
Belessiotis
, “
A new heat-pipe type solar domestic hot water system
,”
Sol. Energy
72
(
1
),
13
20
(
2002
).
10.
B. H.
Yan
,
C.
Wang
, and
L. G.
Li
, “
The technology of micro heat pipe cooled reactor: A review
,”
Ann. Nucl. Energy
135
,
106948
(
2020
).
11.
D.
Palac
,
M.
Gibson
,
L.
Mason
,
M.
Houts
,
P.
McClure
, and
R.
Robinson
, “
Nuclear systems kilopower overview
,”
Report No. GRC-E-DAA-TN29740
(
NASA
,
2016
).
12.
M. S.
El-Genk
and
J.-M. P.
Tournier
, “
SAIRS'—Scalable AMTEC Integrated Reactor Space Power System
,”
Prog. Nucl. Energy
45
(
1
),
25
69
(
2004
).
13.
M. S.
El‐Genk
and
J.
Tournier
, “
Performance analysis of potassium heat pipes radiator for HP‐STMCs space reactor power system
,”
AIP Conf. Proc.
699
(
1
),
793
805
(
2004
).
14.
D. I.
Poston
, “
The heat pipe-operated mars exploration reactor (HOMER
),”
Technical Report No. LA-UR-00-5209
(
2000
).
15.
A.
Levinsky
,
J. J.
Wyk
,
Y.
Arafat
, and
M. C.
S
, “
Westinghouse eVinci reactor for off-grid markets
,”
Transactions
119
(
1
),
931
934
(
2018
).
16.
A.
Bushman
 et al, “
The Martian surface reactor: An advanced nuclear power station for manned extraterrestrial exploration
,” MIT-NSA-TR-003 (
2004
).
17.
P. R.
Mcclure
,
D. I.
Poston
,
V. R.
Dasari
, and
R. S.
Reid
, “
Design of megawatt power level heat pipe reactors
,” MIT-NSA-TR-003 (2015).
18.
R.
Manoj
,
M. C.
Kumar
,
R.
Narasimha Rao
,
K.
Rama Narasimha
, and
P. V. S.
Suresh
, “
Performance evaluation of sodium heat pipe through parameteric studies
,”
Front. Heat Pipes
3
(
4
),
3-043003
(
2013
).
19.
A.
Faghri
,
Heat Pipe Science and Technology
(
Taylor & Francis
,
1995
).
20.
H.
Darcy
,
Les Fontaines Publiques de la Ville de Dijon: Exposition et Application…
(
Victor Dalmont
,
1856
).
21.
S.
Whitaker
, “
Flow in porous media I: A theoretical derivation of Darcy's law
,”
Transp. Porous Media
1
,
3
25
(
1986
).
22.
G.
Pauluis
and
S. B.
Lang
, “
Theoretical investigations of hydrogen, nitrogen, and oxygen homogenous and annular wick heat pipes
,”
Cryogenics
16
(
7
),
415
422
(
1976
).
23.
S. A.
Paripatyadar
and
J. T.
Richardson
, “
Cyclic performance of a sodium heat pipe, solar reformer
,”
Sol. Energy
41
(
5
),
475
485
(
1988
).
24.
J. T.
Richardson
,
S. A.
Paripatyadar
, and
J. C.
Shen
, “
Dynamics of a sodium heat pipe reforming reactor
,”
AIChE J.
34
(
5
),
743
752
(
1988
).
25.
J. H.
Rosenfeld
,
D. M.
Ernst
,
J. E.
Lindemuth
,
J. L.
Sanzi
,
S. M.
Geng
, and
J.
Zuo
, “
An overview of long duration sodium heat pipe tests
,”
AIP Conf. Proc.
699
,
140
147
(
2004
).
26.
K. D.
Hill
and
M.
Gotoh
, “
Temperature stability and reproducibility of pressure-controlled sodium-filled heat pipe furnaces
,” in
Temperature: Its measurement and Control in Science and Industry: Proceedings of the Seventh International Temperature Symposium
(
National Research Council Canada
,
1992
), Vol.
6
, pp.
955
959
.
27.
R. S.
Reid
,
J. T.
Sena
, and
A. L.
Martinez
, “
Sodium heat pipe module test for the SAFE-30 reactor prototype
,”
AIP Conf. Proc.
552
,
869
874
(
2001
).
28.
A.
Rath
and
M. R.
Flynn
, “
Core annular flow theory as applied to the adiabatic section of heat pipes
,”
Phys. Fluids
32
(
8
),
083607
(
2020
).
29.
D.
Panda
,
S.
Paliwal
,
D. P.
Sourya
,
A.
Kharaghani
,
E.
Tsotsas
, and
V. K.
Surasani
, “
Influence of thermal gradients on the invasion patterns during drying of porous media: A lattice Boltzmann method
,”
Phys. Fluids
32
(
12
),
122116
(
2020
).
30.
L.
Fei
,
J.
Yang
,
Y.
Chen
,
H.
Mo
, and
K. H.
Luo
, “
Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method
,”
Phys. Fluids
32
(
10
),
103312
(
2020
).
31.
A.
De Rosis
and
C.
Coreixas
, “
Multiphysics flow simulations using D3Q19 lattice Boltzmann methods based on central moments
,”
Phys. Fluids
32
(
11
),
117101
(
2020
).
32.
A.
De Rosis
,
R.
Huang
, and
C.
Coreixas
, “
Universal formulation of central-moments-based lattice Boltzmann method with external forcing for the simulation of multiphysics phenomena
,”
Phys. Fluids
31
(
11
),
117102
(
2019
).
33.
E.
Dinesh Kumar
,
S. A.
Sannasiraj
, and
V.
Sundar
, “
Phase field lattice Boltzmann model for air-water two phase flows
,”
Phys. Fluids
31
(
7
),
072103
(
2019
).
34.
B.
Eslami
,
S.
Shariatnia
,
H.
Ghasemi
, and
K.
Alba
, “
Non-isothermal buoyancy-driven exchange flows in inclined pipes
,”
Phys. Fluids
29
(
6
),
062108
(
2017
).
35.
J.
Seo
,
D.
Kim
,
H.
Kim
, and
Y. A.
Hassan
, “
An experimental investigation on the characteristics of heat pipes with annular type composite wick structure
,”
Nucl. Eng. Des.
390
,
111701
(
2022
).
36.
B.
Holley
and
A.
Faghri
, “
Permeability and effective pore radius measurements for heat pipe and fuel cell applications
,”
Appl. Therm. Eng.
26
(
4
),
448
462
(
2006
).
37.
F. J.
Higuera
,
A.
Medina
, and
A.
Liñán
, “
Capillary rise of a liquid between two vertical plates making a small angle
,”
Phys. Fluids
20
(
10
),
102102
(
2008
).
38.
J. W.
Bullard
and
E. J.
Garboczi
, “
Capillary rise between planar surfaces
,”
Phys. Rev. E
79
(
1
),
011604
(
2009
).
39.
M.
Piva
, “
Capillary rise in a wedge
,”
Phys. Teach.
47
(
8
),
528
530
(
2009
).
40.
M.
Sundberg
,
A.
Månsson
, and
S.
Tågerud
, “
Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization
,”
J. Colloid Interface Sci.
313
(
2
),
454
460
(
2007
).
41.
L.
Wilhelmy
, “
Ueber die abhängigkeit der capillaritäts-constanten des alkohols von substanz und gestalt des benetzten festen körpers
,”
Ann. Phys.
195
(
6
),
177
217
(
1863
).
42.
A. V.
Nguyen
,
J.
Nalaskowski
, and
J. D.
Miller
, “
The dynamic nature of contact angles as measured by atomic force microscopy
,”
J. Colloid Interface Sci.
262
(
1
),
303
306
(
2003
).
43.
T.
Pompe
and
S.
Herminghaus
, “
Three-phase contact line energetics from nanoscale liquid surface topographies
,”
Phys. Rev. Lett.
85
(
9
),
1930
1933
(
2000
).
44.
J. M.
Schuster
,
C. E.
Schvezov
, and
M. R.
Rosenberger
, “
Influence of experimental variables on the measure of contact angle in metals using the sessile drop method
,”
Procedia Mater. Sci.
8
(
2009
),
742
751
(
2015
).
45.
T.
Zhao
and
L.
Jiang
, “
Contact angle measurement of natural materials
,”
Colloids Surf., B
161
,
324
330
(
2018
).
46.
C. K.
Batchelor
and
G.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
2000
).
47.
J. W.
Taylor
and
S. D.
Ford
, “
Solid metal-liquid metal interaction studies. Part II. Contact angle relationships for sodium on solids
,” No. AERE-M/R-1729 (Atomic Energy Research Establishment, Harwell, Berks, England,1955).
You do not currently have access to this content.