A series of constant-flux saline and turbidity current experiments were carried out, focusing on the coupling impact of bed roughness and permeability on current propagation, mixing, and turbulence characteristics. The distinct current propagation phases on RI (rough and impermeable) and RP (rough and permeable) beds are identified, respectively. Experimental results revealed that the intermittently undulating bed surface breaks the strict no-slip boundary, thus, increasing local current velocity near the bed, while its roughness reduces the current peak profile velocity. Interbed pores induced vertical fluid exchange, which synchronously decreases the current peak profile velocity and local velocity near the bed, causes the density profile to no longer follow a monotonous variation trend along with water depth. The larger bed surface roughness or the interbed porosity leads to the smaller upper TKE (turbulent kinetic energy) peak. The lower TKE peak is inversely proportional to the bed surface roughness of the RI beds, while it is proportional to the porosity of the RP bed. A rough bed surface intensifies the asymmetry of the mean velocity distribution around peak velocity resulting in a transfer barrier of turbulent momentum triggered by the interbed pores. On the RP bed, the cross-correlation function based on two-point statistics captures the spikes associated with pore-scale eddies locally, but under the RI condition, it only obtains the logical timescale characterizing the largest eddies of the current. The sediment deposition makes the turbidity current easier to separate from the RP and RI bed than the saline type, causing a consequence of growing the current height.

1.
J.
Zhou
and
S. K.
Venayagamoorthy
, “
How does three-dimensional canopy geometry affect the front propagation of a gravity current?
,”
Phys. Fluids
32
(
9
),
096605
(
2020
).
2.
C. R.
Marshall
,
R. M.
Dorrell
,
S.
Dutta
,
G. M.
Keevil
,
J.
Peakall
, and
S. M.
Tobias
, “
The effect of Schmidt number on gravity current flows: The formation of large-scale three-dimensional structures
,”
Phys. Fluids
33
,
106601
(
2021
).
3.
Z.
He
,
L.
Zhao
,
T.
Lin
,
P.
Hu
,
Y.
Lv
,
H.-C.
Ho
, and
Y.-T.
Lin
, “
Hydrodynamics of gravity currents down a ramp in linearly stratified environments
,”
J. Hydraul. Eng.-ASCE
143
(
3
),
04016085
(
2017
).
4.
Z.
He
,
L.
Zhao
,
P.
Hu
,
C.
Yu
, and
Y.-T.
Lin
, “
Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation
,”
Adv. Water Resour.
119
,
164
177
(
2018
).
5.
M. G.
Wells
and
R. M.
Dorrell
, “
Turbulence processes within turbidity currents
,”
Annu. Rev. Fluid Mech.
53
(
1
),
59
83
(
2021
).
6.
A.
Dai
and
Y. L.
Huang
, “
Experiments on gravity currents propagating on unbounded uniform slopes
,”
Environ. Fluid Mech.
20
(
6
),
1637
1662
(
2020
).
7.
D.
Han
,
J.
Xiong
,
X.
Xie
, and
Y.-T.
Lin
, “
Effects of emergent and submerged rigid vegetation configurations on gravity current dynamics
,”
Environ. Fluid Mech.
21
(
5
),
1165
1187
(
2021
).
8.
M. C.
De Falco
,
C.
Adduce
,
M. E.
Negretti
, and
E. J.
Hopfinger
, “
On the dynamics of quasi-steady gravity currents flowing up a slope
,”
Adv. Water Resour.
147
,
103791
(
2021
).
9.
M. C.
De Falco
,
C.
Adduce
,
A.
Cuthbertson
,
M. E.
Negretti
,
J.
Laanearu
,
D.
Malcangio
, and
J.
Sommeria
, “
Experimental study of uni- and bi-directional exchange flows in a large-scale rotating trapezoidal channel
,”
Phys. Fluids
33
(
3
),
036602
(
2021
).
10.
C.
Adduce
,
M. R.
Maggi
, and
M. C.
De Falco
, “
Non-intrusive density measurements in gravity currents interacting with an obstacle
,”
Acta Geophys.
(published online) (
2022
).
11.
T.
Tokyay
, “
Effect of rotational ambient, discharge and inflow density on the formation and evolution of a density-driven current over a steep slope
,”
Environ. Fluid Mech.
21
(
2
),
383
403
(
2021
).
12.
S.
Mahmodinia
and
M.
Javan
, “
Vortical structures, entrainment and mixing process in the lateral discharge of the gravity current
,”
Environ. Fluid Mech.
21
(
5
),
1035
1067
(
2021
).
13.
J.
Zordan
,
C.
Juez
,
A. J.
Schleiss
, and
M. J.
Franca
, “
Entrainment, transport and deposition of sediment by saline gravity currents
,”
Adv. Water Resour.
115
,
17
23
(
2018
).
14.
E.
Meiburg
and
B.
Kneller
, “
Turbidity currents and their deposits
,”
Annu. Rev. Fluid Mech.
42
(
1
),
135
156
(
2010
).
15.
S.
Okon
,
Q.
Zhong
, and
Z.
He
, “
Experimental study on the vertical motion of colliding gravity currents
,”
Phys. Fluids
33
,
016601
(
2021
).
16.
C.
Cenedese
,
R.
Nokes
, and
J.
Hyatt
, “
Lock-exchange gravity currents over rough bottoms
,”
Environ. Fluid Mech.
18
(
1
),
59
73
(
2018
).
17.
L.
Zhao
,
Z.
He
,
Y.
Lv
,
Y.-T.
Lin
,
P.
Hu
, and
T.
Pähtz
, “
Front velocity and front location of lock-exchange gravity currents descending a slope in a linearly stratified environment
,”
J. Hydraul. Eng.-ASCE
144
(
11
),
04018068
(
2018
).
18.
L.
Zhao
,
R.
Ouillon
,
B.
Vowinckel
,
E.
Meiburg
,
B.
Kneller
, and
Z.
He
, “
Transition of a hyperpycnal flow into a saline turbidity current due to differential diffusivities
,”
Geophys. Res. Lett.
45
(
21
),
11875
11884
, (
2018
).
19.
Z.
He
,
L.
Zhao
,
R.
Zhu
, and
P.
Hu
, “
Separation of particle-laden gravity currents down a slope in linearly stratified environments
,”
Phys. Fluids
31
(
10
),
106602
(
2019
).
20.
A.
Dai
,
Y.-L.
Huang
, and
Y.-M.
Hsieh
, “
Gravity currents propagating at the base of a linearly stratified ambient
,”
Phys. Fluids
33
,
066601
(
2021
).
21.
D.
Krug
,
M.
Holzner
,
B.
Lüthi
,
M.
Wolf
,
W.
Kinzelbach
, and
A.
Tsinober
, “
The turbulent/non-turbulent interface in an inclined dense gravity current
,”
J. Fluid Mech.
765
,
303
324
(
2015
).
22.
F. Y.
Testik
and
N. A.
Yilmaz
, “
Anatomy and propagation dynamics of continuous-flux release bottom gravity currents through emergent aquatic vegetation
,”
Phys. Fluids
27
(
5
),
056603
(
2015
).
23.
A. Y.
Ozan
,
G.
Constantinescu
, and
A. J.
Hogg
, “
Lock-exchange gravity currents propagating in a channel containing an array of obstacles
,”
J. Fluid Mech.
765
(
17
),
544
575
(
2015
).
24.
J. E.
Simpson
,
Gravity Currents: In the Environment and the Laboratory
(
Cambridge University Press
,
1997
).
25.
S.
Venuleo
,
D.
Pokrajac
,
A. J.
Schleiss
, and
M. J.
Franca
, “
Continuously fed gravity currents propagating over a finite permeable substrate
,”
Phys. Fluids
31
(
12
),
126601
(
2019
).
26.
H. I. S.
Nogueira
,
C.
Adduce
, and
E.
Alves
, “
Analysis of lock-exchange gravity currents over smooth and rough beds
,”
J. Hydraul. Res.
51
(
4
),
417
431
(
2013
).
27.
Z.
He
,
R.
Zhu
,
L.
Zhao
,
J.
Chen
,
Y.-T.
Lin
, and
Y.
Yuan
, “
Hydrodynamics of weakly and strongly stratified two-layer lock-release gravity currents
,”
J. Hydraul. Res.
59
(
6
),
989
–1003 (
2021
).
28.
H.
Ho
and
Y.
Lin
, “
Gravity currents over a rigid and emergent vegetated slope
,”
Adv. Water Resour.
76
,
72
80
(
2015
).
29.
E. P.
Francisco
,
L. F. R.
Espath
,
S.
Laizet
,
J. H.
Silvestrini
, and
V. M.
Calo
, “
Direct numerical simulations of intrusive density- and particle-driven gravity currents
,”
Phys. Fluids
34
,
045116
(
2022
).
30.
H. I.
Nogueira
,
C.
Adduce
,
E.
Alves
, and
M. J.
Franca
, “
Dynamics of the head of gravity currents
,”
Environ. Fluid Mech.
14
(
2
),
519
540
(
2014
).
31.
M. C.
De Falco
,
C.
Adduce
, and
M. R.
Maggi
, “
Gravity currents interacting with a bottom triangular obstacle and implications on entrainment
,”
Adv. Water Resour.
154
,
103967
(
2021
).
32.
T.
Tokyay
and
G.
Constantinescu
, “
The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents
,”
Phys. Fluids
27
(
5
),
056601
(
2015
).
33.
S.
Yaghoubi
,
H.
Afshin
,
B.
Firoozabadi
, and
A.
Farizan
, “
Experimental investigation of the effect of inlet concentration on the behavior of turbidity currents in the presence of two consecutive obstacles
,”
J. Waterw. Port, Coastal, Ocean Eng.
143
(
2
),
04016018
(
2017
).
34.
S. M.
Kashefipour
,
M.
Daryaee
, and
M.
Ghomeshi
, “
Effect of bed roughness on velocity profile and water entrainment in a sedimentary density current
,”
Can. J. Civ. Eng.
45
,
cjce-2016-0490
(
2018
).
35.
P.
Varjavand
,
M.
Ghomeshi
, and
D. A.
Hosseinzadeh
, “
Experimental observation of saline underflows and turbidity currents, flowing over rough beds
,”
Can. J. Civ. Eng.
42
(
1
),
150804143625008
(
2015
).
36.
Y.
Guo
,
L.
Zhang
,
Y.
Shen
, and
J.
Zhang
, “
Modeling study of free overfall in a rectangular channel with strip roughness
,”
J. Hydraul. Eng.-ASCE
134
(
5
),
664
667
(
2008
).
37.
M. R.
Maggi
,
C.
Adduce
, and
M. E.
Negretti
, “
Lock-release gravity currents propagating over roughness elements
,”
Environ. Fluid Mech.
22
,
383
402
(
2022
).
38.
L.
Ottolenghi
,
C.
Cenedese
, and
C.
Adduce
, “
Entrainment in a dense current flowing down a rough sloping bottom in a rotating fluid
,”
J. Phys. Oceanogr.
47
(
3
),
485
498
(
2017
).
39.
W. R.
Shih
and
F. C.
Wu
, “
Hyporheic exchange under undular flows over a coarse granular bed
,”
Geophys. Res. Lett.
47
,
e2020GL089114
, (
2020
).
40.
M. M.
Nasr-Azadani
and
E.
Meiburg
, “
Turbidity currents interacting with three-dimensional seafloor topography
,”
J. Fluid Mech.
745
,
409
443
(
2014
).
41.
J.
Zhou
,
C.
Cenedese
, and
T.
Williams
, “
On the propagation of gravity currents over and through a submerged array of circular cylinders
,”
J. Fluid Mech.
831
(
2
),
394
417
(
2017
).
42.
D.
Sher
and
A. W.
Woods
, “
Mixing in continuous gravity currents
,”
J. Fluid Mech.
818
(
20
),
R4
(
2017
).
43.
S.
Nomura
,
G.
De Cesare
,
M.
Furuichi
,
Y.
Takeda
, and
H.
Sakaguchi
, “
Quasi-stationary flow structure in turbidity currents
,”
Int. J. Sediment Res.
35
(
6
),
659
665
(
2020
).
44.
L. P.
Thomas
,
B. M.
Marino
, and
P. F.
Linden
, “
Gravity currents over permeable substrates
,”
J. Fluid Mech.
366
,
239
258
(
1998
).
45.
B. M.
Marino
and
L. P.
Thomas
, “
Spreading of a gravity current over a permeable surface
,”
J. Hydraul. Eng.-ASCE
128
,
527
533
(
2002
).
46.
T.
Köllner
,
A.
Meredith
,
R.
Nokes
, and
E.
Meiburg
, “
Gravity currents over fixed beds ofmonodisperse spheres
,”
J. Fluid Mech.
901
,
A32
(
2020
).
47.
O. E.
Sequeiros
,
R. L.
Mosquera
, and
F.
Pedocchi
, “
Internal structure of a self-accelerating turbidity current
,”
J. Geophys. Res. Oceans
123
(
9
),
6260
6279
, (
2018
).
48.
M. R.
Chowdhury
and
F. Y.
Testik
, “
Viscous propagation of two-dimensional non-Newtonian gravity currents
,”
Fluid Dyn. Res.
44
(
4
),
045502
(
2012
).
49.
O. E.
Sequeiros
, “
Estimating turbidity current conditions from channel morphology: A Froude number approach
,”
J. Geophys. Res.-Oceans
117
(
C4
),
C04003
, (
2012
).
50.
O. E.
Sequeiros
,
B.
Spinewine
,
R. T.
Beaubouef
,
T.
Sun
,
M. H.
García
, and
G.
Parker
, “
Characteristics of velocity and excess density profiles of saline underflows and turbidity currents flowing over a mobile bed
,”
J. Hydraul. Eng.-ASCE
136
(
7
),
412
433
(
2010
).
51.
O. E.
Sequeiros
,
B.
Spinewine
,
R. T.
Beaubouef
,
T.
Sun
,
M. H.
Garcia
, and
G.
Parker
, “
Bedload transport and bed resistance associated with density and turbidity currents
,”
Sedimentology
57
(
6
),
1463
1490
(
2010
).
52.
M. E.
Negretti
,
L. T.
Francesco
, and
W.
Achim
, “
Intruding gravity currents and re-circulation in a rotating frame: Laboratory experiments
,”
Phys. Fluids
33
,
096607
(
2021
).
53.
W.
Thielicke
and
E. J.
Stamhuis
, “
PIVlab—Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB
,”
J. Open. Res. Soft
2
,
e30
(
2014
).
54.
Y.
Yang
,
Y.-T.
Lin
, and
Y.
Xiao
, “
Hydrodynamic characteristics of flow over emergent vegetation in a strongly curved channel
,”
J. Hydraul. Res.
60
(2),
240
–257 (
2021
).
55.
G.
Voulgaris
and
J. H.
Trowbridge
, “
Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements
,”
J. Atmos. Oceanic Technol.
15
(
1
),
272
289
(
1998
).
56.
F. G.
Carollo
,
V.
Ferro
, and
D.
Termini
, “
Analyzing turbulence intensity in gravel bed channels
,”
J. Hydraul. Eng.
131
(
12
),
1050
1061
(
2005
).
57.
D. G.
Goring
and
V. I.
Nikora
, “
Despiking acoustic Doppler velocimeter data
,”
J. Hydraul. Eng.
128
(
1
),
117
126
(
2002
).
58.
Y.
Zeng
,
X.
Yin
,
C.
Lu
, and
S.
Huang
, “
Experimental investigation on inversion of ADVP measurement for suspended sediment concentration, a case study
,”
IOP Conf. Ser.: Earth Environ. Sci.
227
(
4
),
042031
(
2019
).
59.
M.
Qi
,
J.
Li
,
Q.
Chen
, and
Q.
Zhang
, “
Roughness effects on near-wall turbulence modelling for open-channel flows
,”
J. Hydraul. Res.
56
(
5
),
648
661
(
2018
).
60.
L.
Ottolenghi
,
C.
Adduce
,
R.
Inghilesi
,
V.
Armenio
, and
F.
Roman
, “
Entrainment and mixing in unsteady gravity currents
,”
J. Hydraul. Res.
54
,
541
557
(
2016
).
61.
M.
Guerrero
and
V. D.
Federico
, “
Suspended sediment assessment by combining sound attenuation and backscatter measurements—Analytical method and experimental validation
,”
Adv. Water Resour.
113
,
167
179
(
2018
).
62.
S. A.
Hosseini
,
A.
Shamsai
, and
B.
Ataie-Ashtiani
, “
Synchronous measurements of the velocity and concentration in low density turbidity currents using an acoustic Doppler velocimeter
,”
Flow Meas. Instrum.
17
(
1
),
59
68
(
2006
).
63.
H.
Chanson
,
M.
Takeuchi
, and
M.
Trevethan
, “
Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary
,”
J. Environ. Manage.
88
(
4
),
1406
1416
(
2008
).
64.
W.
Huai
,
J.
Zhang
,
W.
Wang
, and
G. G.
Katul
, “
Turbulence structure in open channel flow with partially covered artificial emergent vegetation
,”
J. Hydrol.
573
,
180
193
(
2019
).
65.
W.
Zhang
,
Z.
He
, and
H.
Jiang
, “
Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence
,”
Deep Sea Res., Part I
129
,
89
98
(
2017
).
66.
X.
Liu
and
Y.
Bai
, “
Turbulent structure and bursting process in multi-bend meander channel
,”
J. Hydrodyn.
26
(
6
),
207
215
(
2014
).
67.
J.
Chen
, “
Two-point statistics of coherent structure in turbulent flow
,”
J. Flow Control, Meas. Visualization
7
,
153
173
(
2019
).
68.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
You do not currently have access to this content.