Behind the iconic “pop!” accompanying the uncorking of a champagne bottle hides a gas flow of surprising complexity. Its modeling is made delicate by its supersonic nature, its interaction with the cork stopper, the eminently unsteady character of the flow escaping from the bottle, and the continuous change of the geometry of the computational flow domain due to the displacement of the cork. Computational fluid dynamics (CFD) simulations revealed the formation, evolution, and dissipation of shock wave patterns during the first millisecond following champagne cork popping. A first crown-shaped shock wave pattern develops radially, which is then followed by the formation of a detached shock wave, or bow shock, induced by the presence of the cork in the axial path of the supersonic gas flow. Moreover, the good agreement between the position of the bow shock previously observed through high-speed imaging and that determined through CFD simulations argues in favor of the numerical method used to describe the ejection of the gas mixture expelled from the bottleneck immediately after the cork popping process.

1.
G.
Liger-Belair
and
C.
Cilindre
, “
Recent progress in the analytical chemistry of champagne and sparkling wines
,”
Annu. Rev. Anal. Chem.
14
,
21
(
2021
).
2.
G.
Liger-Belair
,
M.
Bourget
,
C.
Cilindre
,
H.
Pron
, and
G.
Polidori
, “
Champagne cork popping revisited through high-speed infrared imaging: The role of temperature
,”
J. Food Eng.
116
,
78
(
2013
).
3.
R.
Batt
, “
Pop! Goes the champagne bottle cork
,”
J. Chem. Educ.
48
,
75
(
1971
).
4.
M.
Vollmer
and
K.-P.
Möllmann
, “
Vapour pressure and adiabatic cooling from champagne: Slow-motion visualization of gas thermodynamics
,”
Phys. Educ.
47
,
608
(
2012
).
5.
G.
Liger-Belair
,
D.
Cordier
,
J.
Honvault
, and
C.
Cilindre
, “
Unveiling CO2 heterogeneous freezing plumes during champagne cork popping
,”
Sci. Rep.
7
,
10938
(
2017
).
6.
G.
Liger-Belair
,
D.
Cordier
, and
R.
Georges
, “
Under-expanded supersonic CO2 freezing jets during champagne cork popping
,”
Sci. Adv.
5
,
eaav5528
(
2019
).
7.
R.
Campargue
, “
Progress in overexpanded supersonic jets and skimmed molecular beams in free-jet zones of silence
,”
J. Phys. Chem.
88
,
4466
(
1984
).
8.
A.
Potapov
,
A.
Canosa
,
E.
Jiménez
, and
B.
Rowe
, “
Uniform supersonic chemical reactors: 30 years of astrochemical history and future challenges
,”
Angew. Chem. Int. Ed.
56
,
8618
(
2017
).
9.
M.
Herman
,
T.
Földes
,
K.
Didriche
,
C.
Lauzin
, and
T.
Vanfleteren
, “
Overtone spectroscopy of molecular complexes containing small polyatomic molecules
,”
Int. Rev. Phys. Chem.
35
,
243
(
2016
).
10.
E.
Mach
and
P.
Salcher
,
Optische Untersuchung Der Luftstrahlen
(
F. Tempsky
,
1890
).
11.
H.
Reichenbach
, “
Contributions of Ernst Mach to fluid mechanics
,”
Annu. Rev. Fluid Mech.
15
,
1
29
(
1983
).
12.
S. W.
Kieffer
, “
Blast dynamics at Mount St Helens on 18 May 1980
,”
Nature
291
,
568
(
1981
).
13.
J. S.
Méndez Harper
,
C.
Cimarelli
,
J.
Dufek
,
D.
Gaudin
, and
R. J.
Thomas
, “
Inferring compressible fluid dynamics from vent discharges during volcanic eruptions
,”
Geophys. Res. Lett.
45
,
7226
, (
2018
).
14.
M. M.
Orescanin
,
J. M.
Austin
, and
S. W.
Kieffer
, “
Unsteady high-pressure flow experiments with applications to explosive volcanic eruptions
,”
J. Geophys. Res. B
115
,
B06206
, (
2010
).
15.
N. C.
Shibley
and
G.
Laughlin
, “
Do oceanic convection and clathrate dissociation drive Europa's geysers?
,”
Planet. Sci. J.
2
,
221
(
2021
).
16.
H.
Ashkenas
and
F. S.
Sherman
, “
The structure and utilization of supersonic free jets in low density wind tunnels
,”
Proceedings of the 4th International Symposium on Rarefied Gas Dynamics
2
(
7
),
84
(
1964
).
17.
J.
von der Linden
,
C.
Kimblin
,
I.
McKenna
,
S.
Bagley
,
H.-C.
Li
,
R.
Houim
,
C. S.
Kueny
,
A.
Kuhl
,
D.
Grote
,
M.
Converse
,
C. E. J.
Vossen
,
S.
Stern
,
C.
Cimarelli
, and
J.
Sears
, “
Standing shock prevents propagation of sparks in supersonic explosive flows
,”
Commun. Earth Environ.
2
,
195
(
2021
).
18.
M. M.
Orescanin
and
J. M.
Austin
, “Exhaust of underexpanded jets from finite reservoirs,”
J. Propul. Power
26
,
744
(
2012
).
19.
N.
Belouaggadia
,
H.
Olivier
, and
R.
Brun
, “
Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows
,”
J. Fluid Mech.
607
,
167
(
2008
).
20.
J.
Pattison
,
S.
Celotto
,
A.
Khan
, and
W.
O'Neill
, “
Standoff distance and bow shock phenomena in the cold spray process
,”
Surf. Coat. Technol.
202
,
1443
(
2008
).
21.
J. T.
Batina
, “
Unsteady Euler airfoil solutions using unstructured dynamic meshes
,”
AIAA J.
28
,
1381
(
1990
).
22.
E.
Rathakrishnan
,
Applied Gas Dynamics
(
John Wiley & Sons
,
2019
).
23.
L.
Wagner
and
S.
Braun
, “
Numerical investigation of the gas jet formation immediately after opening a champagne bottle
,” Ph.D. thesis (
Technische Universität Wien
,
2021
).
24.
J.
Sinclair
and
X.
Cui
, “
A theoretical approximation of the shock standoff distance for supersonic flows around a circular cylinder
,”
Phys. Fluids
29
,
026102
(
2017
).

Supplementary Material

You do not currently have access to this content.