It is shown how well-chosen perforations in a wall flow can locally reduce skin friction drag by modifying the generation of bursts in the boundary layer. For this purpose, a detailed hot wire boundary layer experimental investigation of the flow past a perforated plate, complemented with large eddy simulations, is carried out and compared to the smooth case. The perforated plate is obtained with an array of flush-mounted circular cavities. These cavities are disposed in a periodic staggered arrangement. For the three tested flow velocities, the momentum thickness-based Reynolds number varies from Reθ=1830 to 3380 and the cavity diameter and spacing in wall units, respectively, from d+=130 to 250 and L+=587 to 1075, the latter being identical in both spanwise and streamwise directions. The mean velocity profiles evidence a thickening of the viscous sublayer and a decrease in the friction velocity as compared to the smooth wall case. The application of the Variable Interval Time Averaging technique highlights an upward shift of the bursts from the wall and an attenuation of the average burst intensity and duration. Spanwise measurements evidence an overall bursts attenuation despite the lack of spanwise uniformity. The three-dimensional (3D) mean flow topology arising from the large eddy simulations provides evidence for the qualitative similarities between the current setup and the spanwise wall oscillations.

1.
Adrian
,
R. J.
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
(
4
),
041301
(
2007
).
2.
Antonia
,
R. A.
, and
Luxton
,
R. E.
, “
The response of a turbulent boundary layer to a step change in surface roughness part 1. Smooth to rough
,”
J. Fluid Mech.
48
(
4
),
721
761
(
1971
).
3.
Auteri
,
F.
,
Baron
,
A.
,
Belan
,
M.
,
Campanardi
,
G.
, and
Quadrio
,
M.
, “
Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow
,”
Phys. Fluids
22
(
11
),
115103
(
2010
).
4.
Bauerheim
,
M.
, and
Joly
,
L.
, “
LES of the aero-acoustic coupling in acoustic liners containing multiple cavities
,” in
AIAA Aviation Forum
,
2020
.
5.
Blackwelder
,
R. F.
, and
Kaplan
,
R. E.
, “
On the wall structure of the turbulent boundary layer
,”
J. Fluid Mech.
76
(
1
),
89
112
(
1976
).
6.
Boukharfane
,
R.
,
Bodart
,
J.
,
Jacob
,
M.
,
Joly
,
L.
,
Bridel-Bertomeu
,
T.
, and
Node-Langlois
,
T.
, “
Characterization of the pressure fluctuations within a controlled-diffusion airfoil boundary layer at large Reynolds numbers
,” in
25th AIAA/CEAS Aeroacoustics Conference
,
2019
.
7.
Chanetz
,
B.
,
Délery
,
J.
,
Gilliéron
,
P.
,
Gnemmi
,
P.
,
Gowree
,
E.
, and
Perrier
,
P.
,
Experimental Aerodynamics – An Introductory Guide,
1st edition (
Springer
,
2020
).
8.
Choi
,
K.
, “
Near-wall structure of a turbulent boundary layer with riblets
,”
J. Fluid Mech.
208
,
417
458
(
1989
).
9.
Choi
,
K.-S.
, “
Near-wall structure of turbulent boundary layer with spanwise-wall oscillation
,”
Phys. Fluids
14
(
7
),
2530
2542
(
2002
).
10.
Choi
,
K.-S.
,
DeBisschop
,
J.-R.
, and
Clayton
,
B. R.
, “
Turbulent boundary-layer control by means of spanwise-wall oscillation
,”
AIAA J.
36
(
7
),
1157
1163
(
1998
).
11.
Cimarelli
,
A.
,
Frohnapfel
,
B.
,
Hasegawa
,
Y.
,
De Angelis
,
E.
, and
Quadrio
,
M.
, “
Prediction of turbulence control for arbitrary periodic spanwise wall movement
,”
Phys. Fluids
25
(
7
),
075102
(
2013
).
12.
Di Cicca
,
G. M.
,
Iuso
,
G.
,
Spazzini
,
P. G.
, and
Onorato
,
M.
, “
Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations
,”
J. Fluid Mech.
467
,
41
56
(
2002
).
13.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
, “
Gmsh: A 3D finite element mesh generator with built-in pre- and post-processing facilities
,”
Int. J. Numer. Methods Eng.
79
(
11
),
1309
1331
(
2009
).
14.
Gowree
,
E.
,
Atkin
,
C.
, and
Gruppetta
,
S.
, “
A simple digital-optical system to improve accuracy of hot-wire measurements
,”
Meas. Sci. Technol.
26
,
095303
(
2015
).
15.
Gowree
,
E.
,
Jagadeesh
,
C.
, and
Atkin
,
C.
, “
Skin friction drag reduction over staggered three dimensional cavities
,”
Aerosp. Sci. Technol.
84
,
520
529
(
2019
).
16.
Grébert
,
A.
,
Bodart
,
J.
,
Jamme
,
S.
, and
Joly
,
L.
, “
Simulations of shock wave/turbulent boundary layer interaction with upstream micro vortex generators
,”in
10th International Symposium on Turbulence and Shear Flow Phenomena
,
2017
.
17.
Grébert
,
A.
,
Bodart
,
J.
,
Jamme
,
S.
, and
Joly
,
L.
, “
Simulations of shock wave/turbulent boundary layer interaction with upstream micro vortex generators
,”
Int. J. Heat Fluid Flow
72
,
73
85
(
2018
).
18.
Grébert
,
A.
,
Bodart
,
J.
, and
Joly
,
L.
, “
Investigation of wall-pressure fluctuations characteristics on a naca0012 airfoil with blunt trailing edge
,” AIAA Paper No. AIAA 2016-2811,
2016
.
19.
Iuso
,
G.
,
Onorato
,
M.
,
Spazzini
,
P. G.
, and
Di Cicca
,
G. M.
, “
Wall turbulence manipulation by large-scale streamwise vortices
,”
J. Fluid Mech.
473
,
23
58
(
2002
).
20.
Jasinski
,
C
, and
Corke
,
T.
, “
Mechanism for increased viscous drag over porous sheet acoustic liners
,”
AIAA J.
58
(
0
),
3393
3404
(
2020
).
21.
Jiménez
,
J.
, “
Turbulent flows over rough wall
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
22.
Jørgensen
,
F.
, “
How to measure turbulence with hot-wire anemometers—A practical guide,” in Dantec Dynamics - Technical Guide
(
2002
).
23.
Karniadakis
,
G. E.
, and
Choi
,
K.
, “
Mechanisms on transverse motion in turbulent wall flows
,”
Annu. Rev. Fluid Mech.
35
(
1
),
45
62
(
2003
).
24.
Kendall
,
A.
, and
Koochesfahani
,
M.
, “
A method for estimating wall friction in turbulent wall-bounded flows
,”
Exp. Fluids
44
,
773
780
(
2008
).
25.
Kim
,
H. T.
,
Kline
,
S. J.
, and
Reynolds
,
W. C.
, “
The production of turbulence near a smooth wall in a turbulent boundary layer
,”
J. Fluid Mech.
50
(
1
),
133
160
(
1971
).
26.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
(
4
),
741
773
(
1967
).
27.
Leschziner
,
M. A.
, “
Friction-drag reduction by transverse wall motion—A review
,”
J. Mech.
36
(
5
),
649
663
(
2020
).
28.
Lienhart
,
H.
,
Breuer
,
M.
, and
Köksoy
,
C.
, “
Drag reduction by dimples?—A complementary experimental/numerical investigation
,”in
the Fifth International Symposium on Turbulence and Shear Flow Phenomena (TSFP5)
[
Int. J. Heat Fluid Flow
29
(
3
),
783
791
(
2008
)].
29.
Lumley
,
J. L.
, “
Drag reduction in turbulent flow by polymer additives
,”
J. Polym. Sci. Macromol. Rev.
7
(
1
),
263
290
(
1973
).
30.
Marusic
,
I.
,
Chandran
,
D.
,
Rouhi
,
A.
,
fu
,
M.
,
Wine
,
D.
,
Holloway
,
B.
,
Chung
,
D.
, and
Smits
,
A.
, “
An energy-efficient pathway to turbulent drag reduction
,”
Nat. Commun.
12
,
5805
(
2021
).
31.
Örlü
,
R.
, and
Alfredsson
,
P.-H.
, “
On spatial resolution issues related to time-averaged quantities using hot-wire anemometry
,”
Exp. Fluids
49
,
101
110
(
2010
).
32.
Patel
,
V. C.
, “
Calibration of the preston tube and limitations on its use in pressure gradients
,”
J. Fluid Mech.
23
(
1
),
185
208
(
1965
).
33.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
34.
Quadrio
,
M.
,
Ricco
,
P.
, and
Viotti
,
C.
, “
Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction
,”
J. Fluid Mech.
627
,
161
178
(
2009
).
35.
Rao
,
K. N.
,
Narasimha
,
R.
, and
Narayanan
,
M. A. B.
, “
The ‘bursting’ phenomenon in a turbulent boundary layer
,”
J. Fluid Mech.
48
(
2
),
339
352
(
1971
).
36.
Ricco
,
P.
, and
Hahn
,
S.
, “
Turbulent drag reduction through rotating discs
,”
J. Fluid Mech.
722
,
267
290
(
2013
).
37.
Ricco
,
P.
,
Skote
,
M.
, and
Leschziner
,
M. A.
, “
A review of turbulent skin-friction drag reduction by near-wall transverse forcing
,”
Prog. Aerosp. Sci.
123
,
100713
(
2021
).
38.
Robinson
,
S. K.
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
(
1
),
601
639
(
1991
).
39.
Schlatter
,
P.
, and
Orlu
,
R.
, “
Assessment of direct numerical simulation data of turbulent boundary layers
,”
J. Fluid Mech.
659
,
116
126
(
2010
).
40.
Schlichting
,
H.
, and
K.
Gersten
, edited by
Boundary-Layer Theory
(
Springer
,
Berlin/Heidelberg
,
2017
).
41.
Silvestri
,
A.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
,
Cazzolato
,
B.
, and
Zander
,
A.
, “
Attenuation of sweep events in a turbulent boundary layer using micro-cavities
,”
Exp. Fluids
58
,
1–13
(
2017
).
42.
Sullivan
,
P.
, and
Pollard
,
A.
, “
Coherent structure identification from the analysis of hot-wire data
,”
Meas. Sci. Technol.
7
(
10
),
1498
1516
(
1996
).
43.
Tay
,
C.
,
Khoo
,
B.
, and
Chew
,
Y.
, “
Mechanics of drag reduction by shallow dimples in channel flow
,”
Phys. Fluids
27
,
035109
(
2015
).
44.
van Nesselrooij
,
M.
,
Veldhuis
,
L. L. M.
,
van Oudheusden
,
B. W.
, and
Schrijer
,
F. F. J.
, “
Drag reduction by means of dimpled surfaces in turbulent boundary layers
,”
Exp. Fluids
57
(
9
),
142
(
2016
).
45.
Viotti
,
C.
,
Quadrio
,
M.
, and
Luchini
,
P.
, “
Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction
,”
Phys. Fluids
21
(
11
),
115109
(
2009
).
46.
Vreman
,
A.
, “
An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications
,”
Phys. Fluids
16
(
10
),
3670
3681
(
2004
).
47.
Walsh
,
M.
, and
Lindemann
,
A.
, “
Optimization and application of riblets for turbulent drag reduction
,” in AIAA 22nd Aerospace Sciences Meeting, Reno, NV, 9–12 January 1984 (AIAA,
1984
).
48.
Walsh
,
M. J.
, “
Drag characteristics of V-groove and transverse curvature riblets
,” in
Conference Proceedings: Symposium on Viscous flow drag reduction
(
1980
).
49.
Wei
,
T.
,
Schmidt
,
R.
, and
Mcmurtry
,
P.
, “
Comment on the Clauser chart method for determining the friction velocity
,”
Exp. Fluids
38
,
695
699
(
2005
).
You do not currently have access to this content.