On roughening one of the walls in a planar Couette flow, it was reported that turbulence augments near the opposite wall [Javanappa and Narasimhamurthy, “Turbulent plane Couette flow with a roughened wall,” Phys. Rev. Fluids 6, 104609 (2021)]. The current direct numerical simulation work further explores this interesting phenomenon by investigating the flow dynamics and anisotropic nature of turbulence. For roughening, transverse square ribs are placed only on the bottom wall with streamwise pitch separations s=5r and 10r, where r=0.2h is the rib height and h is the channel half height. The time series of spanwise vorticity fluctuation in the case of s=10r shows the presence of coherent Kelvin–Helmholtz-like structures behind the ribs. Phase analysis using Hilbert transform reveals that the flow within the cavity for the s=5r case is in-phase, while a phase shift is observed for the s=10r case. The visualization of enstrophy production rate (ωiSijωj) reveals that regions of intense positive ones are observed to be topologically “sheet-like,” while the regions of negative ones are found to be “spotty.” Anisotropy tensors and anisotropic invariant maps are used to explore turbulence anisotropy at both large and small scales of motion. It is observed that anisotropy is reduced in both the cases near the vicinity of roughness.

1.
Ashrafian
,
A.
, and
Andersson
,
H. I.
, “
The structure of turbulence in a rod-roughened channel
,”
Int. J. Heat Fluid Flow
27
,
65
79
(
2006
).
2.
Ashrafian
,
A.
,
Andersson
,
H. I.
, and
Manhart
,
M.
, “
DNS of turbulent flow in a rod-roughened channel
,”
Int. J. Heat Fluid Flow
25
,
373
383
(
2004
).
3.
Avsarkisov
,
V.
,
Hoyas
,
S.
,
Oberlack
,
M.
, and
García-Galache
,
J. P.
, “
Turbulent plane Couette flow at moderately high Reynolds number
,”
J. Fluid Mech.
751
,
R1
(
2014
).
4.
Aydin
,
E. M.
, and
Leutheusser
,
H. J.
, “
Plane-Couette flow between smooth and rough walls
,”
Exp. Fluids
11
,
302
312
(
1991
).
5.
Bandyopadhyay
,
P. R.
, “
Rough-wall turbulent boundary layers in the transition regime
,”
J. Fluid Mech.
180
,
231
266
(
1987
).
6.
Bech
,
K. H.
,
Tillmark
,
N.
,
Alfredsson
,
P. H.
, and
Andersson
,
H. I.
, “
An investigation of turbulent plane Couette flow at low Reynolds numbers
,”
J. Fluid Mech.
286
,
291
325
(
1995
).
7.
Bhaganagar
,
K.
,
Kim
,
J.
, and
Coleman
,
G.
, “
Effect of roughness on wall-bounded turbulence
,”
Flow, Turbul. Combust.
72
,
463
492
(
2004
).
8.
Burattini
,
P.
,
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
, “
Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall
,”
J. Fluid Mech.
600
,
403
426
(
2008
).
9.
Choi
,
K.
, and
Lumley
,
J. L.
, “
The return to isotropy of homogeneous turbulence
,”
J. Fluid Mech.
436
,
59
84
(
2001
).
10.
Emory
,
M.
, and
Iaccarino
,
G.
, “
Visualizing turbulence anisotropy in the spatial domain with componentality contours
,” in
Center for Turbulence Research, Annual Research Briefs
(
Center for Turbulence Research Stanford
,
2014
), pp.
123
138
.
11.
Gandía-Barberá
,
S.
,
Hoyas
,
S.
,
Oberlack
,
M.
, and
Kraheberger
,
S.
, “
The link between the Reynolds shear stress and the large structures of turbulent Couette-Poiseuille flow
,”
Phys. Fluids
30
,
041702
(
2018
).
12.
Ghosh
,
S.
, and
Goswami
,
P. S.
, “
A statistical analysis of velocity and acceleration fluctuations of inertial particles in particle-laden turbulent Couette flow
,”
Phys. Fluids
34
(
1
),
015103
(
2022
).
13.
Grötzbach
,
G.
, “
Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection
,”
J. Comput. Phys.
49
,
241
264
(
1983
).
14.
Hanjalić
,
K.
, and
Launder
,
B. E.
, “
Fully developed asymmetric flow in a plane channel
,”
J. Fluid Mech.
51
,
301
335
(
1972
).
15.
Holstad
,
A.
,
Andersson
,
H. I.
, and
Pettersen
,
B.
, “
Turbulence in a three-dimensional wall-bounded shear flow
,”
Int. J. Numer. Meth. Fluids
62
,
875
905
(
2009
).
16.
Hunt
,
J. C. R.
,
Wray
,
A.
, and
Moin
,
P.
, “
Eddies, stream, and convergence zones in turbulent flows
,” in
Center for Turbulence Research, Annual Research Briefs
(Stanford University,
1988
), pp.
193
208
.
17.
Ismail
,
U.
,
Zaki
,
T. A.
, and
Durbin
,
P. A.
, “
Simulations of rib-roughened rough-to-smooth turbulent channel flows
,”
J. Fluid Mech.
843
,
419
449
(
2018
).
18.
Javanappa
,
S. K.
, and
Narasimhamurthy
,
V. D.
, “
DNS of plane Couette flow with surface roughness
,”
Int. J. Adv. Eng. Sci. Appl. Math.
11
,
288
300
(
2019
).
19.
Javanappa
,
S. K.
, and
Narasimhamurthy
,
V. D.
, “
Turbulent plane Couette flow with a roughened wall
,”
Phys. Rev. Fluids
6
,
104609
(
2021
).
20.
Jiménez
,
J.
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
21.
Kim
,
J. H.
,
Lee
,
Y. M.
,
Lee
,
J. H.
, and
Kim
,
J.
, “
Influence of the surface roughness on inner–outer interactions in a turbulent Couette–Poiseuille flow
,”
Phys. Fluids
33
(
4
),
045113
(
2021
).
22.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
23.
Krogstad
,
P.-Å.
,
Andersson
,
H. I.
,
Bakken
,
O. M.
, and
Ashrafian
,
A.
, “
An experimental and numerical study of channel flow with rough walls
,”
J. Fluid Mech.
530
,
327
352
(
2005
).
24.
Lee
,
Y. M.
,
Kim
,
J. H.
, and
Lee
,
J. H.
, “
Direct numerical simulation of a turbulent Couette-Poiseuille flow with a rod-roughened wall
,”
Phys. Fluids
30
,
105101
(
2018
).
25.
Lee
,
M. J.
, and
Reynolds
,
W. C.
, “
Numerical experiments on the structure of homogeneous turbulence
,” Report No. TF-24 (
Stanford University
,
1985
).
26.
Leonardi
,
S.
,
Orlandi
,
P.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, “
Structure of turbulent channel flow with square bars on one wall
,”
Int. J. Heat Fluid Flow
25
,
384
392
(
2004
).
27.
Leonardi
,
S.
,
Orlandi
,
P.
,
Smalley
,
R. J.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, “
Direct numerical simulations of turbulent channel flow with transverse square bars on one wall
,”
J. Fluid Mech.
491
,
229
238
(
2003
).
28.
Li
,
M.
, and
Yang
,
D.
, “
Direct numerical simulation and statistical analysis of stress-driven turbulent Couette flow with a free-slip boundary
,”
Phys. Fluids
31
(
8
),
085113
(
2019
).
29.
Lumley
,
J. L.
, “
Computational modeling of turbulent flows
,”
Adv. Appl. Mech.
18
,
123
176
(
1979
).
30.
Lumley
,
J. L.
, and
Newman
,
G. R.
, “
The return to isotropy of homogeneous turbulence
,”
J. Fluid Mech.
82
,
161
178
(
1977
).
31.
Mahmoodi-Jezeh
,
S. V.
, and
Wang
,
B.
, “
Direct numerical simulation of turbulent flow through a ribbed square duct
,”
J. Fluid Mech.
900
,
A18
(
2020
).
32.
Naim
,
M. S.
, and
Baig
,
M. F.
, “
Turbulent drag reduction in Taylor-Couette flows using different super-hydrophobic surface configurations
,”
Phys. Fluids
31
(
9
),
095108
(
2019
).
33.
Narasimhamurthy
,
V. D.
,
Andersson
,
H. I.
, and
Pettersen
,
B.
, “
Novel features of a fully developed mixing-layer between co-flowing laminar and turbulent Couette flows
,”
Phys. Fluids
26
,
031703
(
2014
).
34.
Orlandi
,
P.
, and
Leonardi
,
S.
, “
DNS of turbulent channel flows with two- and three-dimensional roughness
,”
J. Turbul.
7
,
53
(
2006
).
35.
Owolabi
,
B. E.
, and
Lin
,
C.
, “
Marginally turbulent Couette flow in a spanwise confined passage of square cross section
,”
Phys. Fluids
30
(
7
),
075102
(
2018
).
36.
Perry
,
A. E.
,
Schofield
,
W. H.
, and
Joubert
,
P.
, “
Rough wall turbulent boundary layers
,”
J. Fluid Mech.
37
,
383
413
(
1969
).
37.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
38.
Razzak
,
M. A.
,
Cheong
,
K. B.
, and
Lua
,
K. B.
, “
Numerical study of Taylor–Couette flow with longitudinal corrugated surface
,”
Phys. Fluids
32
(
5
),
053606
(
2020
).
39.
Shah
,
K. B.
, and
Ferziger
,
J. H.
, “
Large eddy simulations of flow past a cubic obstacle
,” Ph. D. thesis (
Stanford University
,
1998
).
40.
Smalley
,
R.
,
Leonardi
,
S.
,
Antonia
,
R.
,
Djenidi
,
L.
, and
Orlandi
,
P.
, “
Reynolds stress anisotropy of turbulent rough wall layers
,”
Exp. Fluids
33
,
31
37
(
2002
).
41.
Smith
,
C. R.
, and
Metzler
,
S. P.
, “
The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer
,”
J. Fluid Mech.
129
,
27
54
(
1983
).
42.
Speziale
,
C. G.
, and
Gatski
,
T. B.
, “
Analysis and modelling of anisotropies in the dissipation rate of turbulence
,”
J. Fluid Mech.
344
,
155
180
(
1997
).
43.
Taylor
,
G. I.
, “
Production and dissipation of vorticity in a turbulent fluid
,”
Proc. R. Soc. London, Ser. A
164
,
15
23
(
1938
).
44.
Teng
,
H.
,
Liu
,
N.
,
Lu
,
X.
, and
Khomami
,
B.
, “
Turbulent drag reduction in plane Couette flow with polymer additives: A direct numerical simulation study
,”
J. Fluid Mech.
846
,
482
507
(
2018
).
45.
Tillmark
,
N.
, and
Alfredsson
,
P. H.
, “
Structures in turbulent plane Couette flow obtained from correlation measurements
,” in
Advances in Turbulence V
(
Springer
,
1994
), pp.
502
507
.
46.
Townsend
,
A. A.
, “
Equilibrium layers and wall turbulence
,”
J. Fluid Mech.
11
,
97
120
(
1961
).
47.
Townsend
,
A. A.
,
The Structure of Turbulent Shear Flow
, 2nd ed. (
Cambridge University Press
,
1976
).
48.
Tsinober
,
A.
, “
Vortex stretching versus production of strain/dissipation
,” in
Turbulence Structure and Vortex Dynamics
(
Cambridge University Press
,
2000
), pp.
164
191
.
49.
Varma
,
H.
,
Jagadeesan
,
K.
,
Narasimhamurthy
,
V. D.
,
Kesarkar
,
A. P.
, and
Andersson
,
H. I.
, “
LES and DNS of symmetrically roughened turbulent channel flows
,”
Acta Mech.
232
,
4951
4968
(
2021
).
50.
Vreugdenhil
,
C. A.
, and
Taylor
,
J. R.
, “
Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model
,”
Phys. Fluids
30
(
8
),
085104
(
2018
).
You do not currently have access to this content.